

Baseplate

Baseplate is a framework to build services on and a library of common and
well-tested code to share. Its goal is to provide all the common things a
service needs with as few surprises as possible. It can be divided up into
three distinct categories of components, listed below.

The Instrumentation Framework

Baseplate provides an instrumentation framework that integrates with popular
application frameworks to provide automatic diagnostics to services.

	baseplate.core: The skeleton of the instrumentation framework

	baseplate.context: Integration with client libraries
	baseplate.context.cassandra: Cassandra CQL Client

	baseplate.context.hvac: Client for using Vault's advanced features

	baseplate.context.kombu: Client for publishing to queues

	baseplate.context.memcache: Memcached Client

	baseplate.context.redis: Redis Client

	baseplate.context.sqlalchemy: SQL Client for relational databases (e.g. PostgreSQL)

	baseplate.context.thrift: Thrift client for RPC to other backend services

	baseplate.integration: Integration with application frameworks

	baseplate.diagnostics: Diagnostics observers

The Library

Baseplate also provides a collection of “extra batteries”. These independent
modules provide commonly needed functionality to applications. They can be used
separately from the rest of Baseplate.

	baseplate: General purpose helpers

	baseplate.config: Configuration parsing

	baseplate.crypto: Cryptographic Primitives

	baseplate.events: Events for the data pipeline

	baseplate.experiments: Experiments framework
	baseplate.experiments.providers.r2: Legacy, R2-style experiments

	baseplate.experiments.providers.feature_flag: Feature Flag experiments

	baseplate.experiments.providers.forced_variant: Forced Variant experiment

	baseplate.experiments.providers.simple_experiment: Simple experiment

	baseplate.file_watcher: Read files from disk as they change

	baseplate.live_data: Tools for centralized data that updates near instantly

	baseplate.message_queue: POSIX IPC Message Queues

	baseplate.metrics: Counters, timers, gauges, and histograms for statsd

	baseplate.queue_consumer: Consume messages from a queue

	baseplate.random: Extensions to the standard library's random module

	baseplate.retry: Policies for retrying operations

	baseplate.secrets: Secure storage and access to secret tokens and credentials

	baseplate.thrift_pool: A Thrift client connection pool

	baseplate.service_discovery: Integration with Synapse service discovery

The CLI Toolkit

Baseplate provides command line tools which are useful for running applications
in production and development.

	baseplate-healthcheck: Is your service alive?

	baseplate-serve: The application server

	baseplate-script: Run backend scripts

	baseplate-tshell: Begin an interactive shell for a Thrift service

HTTP services can use Pyramid’s pshell [https://docs.pylonsproject.org/projects/pyramid/en/latest/pscripts/pshell.html] in order to get an interactive shell.

Appendix

	Index

	Module Index

	Glossary

baseplate.core

The heart of the Baseplate framework is its diagnostics system. Here’s an
incomplete example of an application built with the framework:

def do_something(request):
 request.some_redis_client.ping()

def make_app(app_config):
 ... snip ...

 baseplate = Baseplate()
 baseplate.configure_metrics(metrics_client)
 baseplate.add_to_context(
 "some_redis_client", RedisContextFactory(redis_pool))

 ... snip ...

When a request is made which routes to the do_something handler, a
ServerSpan is automatically created to represent
the time spent processing the request in our application. If the incoming
request has trace headers, the constructed server span will have the same IDs
as the upstream service’s child span.

When we call request.some_redis_client.ping() in the handler, Baseplate
will create a child Span object to represent the
time taken talking to redis.

The creation of the server and child spans will trigger updates on all the
ServerSpanObserver and
SpanObserver objects registered. Because we called
baseplate.configure_metrics in our setup, this means we have observers that
send statsd metrics so Baseplate will automatically send metrics on how long it
took our application to do_something and how long Redis took to respond to
our ping to statsd/Graphite without any extra code in our application.

Note

The documentation below explains how all this works under the hood. If you
just want to write an application, you can skip on to how to integrate
Baseplate with your application framework or how
to use client libraries with diagnostic instrumentation.

Baseplate

At the root of each application is a single instance of
Baseplate. This object can be integrated with
various other frameworks (e.g. Thrift, Pyramid, etc.) using one of the
integrations.

	
class baseplate.core.Baseplate

	The core of the Baseplate diagnostics framework.

This class coordinates monitoring and tracing of service calls made to
and from this service. See baseplate.integration for how to
integrate it with the application framework you are using.

	
register(observer)

	Register an observer.

	Parameters

	observer (baseplate.core.BaseplateObserver) – An observer.

	
configure_logging()

	Add request context to the logging system.

	
configure_metrics(metrics_client)

	Send timing metrics to the given client.

This also adds a baseplate.metrics.Batch object to the
metrics attribute on the context object where you can add
your own application-specific metrics. The batch is automatically
flushed at the end of the request.

	Parameters

	metrics_client (baseplate.metrics.Client) – Metrics client to send
request metrics to.

	
configure_tracing(tracing_client, *args, **kwargs)

	Collect and send span information for request tracing.

When configured, this will send tracing information automatically
collected by Baseplate to the configured distributed tracing service.

	Parameters

	tracing_client (baseplate.diagnostics.tracing.TracingClient) – Tracing
client to send request traces to.

	
configure_error_reporting(client)

	Send reports for unexpected exceptions to the given client.

This also adds a raven.Client [https://docs.sentry.io/clients/python/api/#raven.Client] object to the sentry
attribute on the context object where you can send your own
application-specific events.

	Parameters

	client (raven.Client [https://docs.sentry.io/clients/python/api/#raven.Client]) – A configured raven client.

	
add_to_context(name, context_factory)

	Add an attribute to each request’s context object.

On each request, the factory will be asked to create an appropriate
object to attach to the context object.

	Parameters

	
	name (str [https://docs.python.org/3.4/library/stdtypes.html#str]) – The attribute on the context object to attach the
created object to. This may also be used for metric/tracing
purposes so it should be descriptive.

	context_factory (baseplate.context.ContextFactory) – A factory.

	
make_server_span(context, name, trace_info=None)

	Return a server span representing the request we are handling.

In a server, a server span represents the time spent on a single
incoming request. Any calls made to downstream services will be new
child spans of the server span, and the server span will in turn be the
child span of whatever upstream request it is part of, if any.

	Parameters

	
	context – The context object for this request.

	name (str [https://docs.python.org/3.4/library/stdtypes.html#str]) – A name to identify the type of this request, e.g.
a route or RPC method name.

	trace_info (baseplate.core.TraceInfo) – The trace context of this
request as passed in from upstream. If None [https://docs.python.org/3.4/library/constants.html#None], a new trace
context will be generated.

	
class baseplate.core.TraceInfo

	Trace context for a span.

If this request was made at the behest of an upstream service, the upstream
service should have passed along trace information. This class is used for
collecting the trace context and passing it along to the server span.

	
classmethod from_upstream(trace_id, parent_id, span_id, sampled, flags)

	Build a TraceInfo from individual headers.

	Parameters

	
	trace_id (int [https://docs.python.org/3.4/library/functions.html#int]) – The ID of the trace.

	parent_id (int [https://docs.python.org/3.4/library/functions.html#int]) – The ID of the parent span.

	span_id (int [https://docs.python.org/3.4/library/functions.html#int]) – The ID of this span within the tree.

	sampled (bool [https://docs.python.org/3.4/library/functions.html#bool]) – Boolean flag to determine request sampling.

	flags (int [https://docs.python.org/3.4/library/functions.html#int]) – Bit flags for communicating feature flags downstream

	Raises

	ValueError [https://docs.python.org/3.4/library/exceptions.html#ValueError] if any of the values are inappropriate.

Convenience Methods

Baseplate comes with some core monitoring observers built in and just requires
you to configure them. You can enable them by calling the relevant methods on
your application’s Baseplate object.

	Logging: configure_logging()

	Metrics (statsd): configure_metrics()

	Tracing (Zipkin): configure_tracing()

	Error Reporting (Sentry): configure_error_reporting()

Additionally, Baseplate provides helpers which can be attached to the
context object in requests. These helpers make the passing of trace
information and collection of spans automatic and transparent. Because this
pattern is so common, Baseplate has a special kind of observer for it which can
be registered with add_to_context(). See the
baseplate.context package for a list of helpers included.

Spans

Each time a new request comes in to be served, the time taken to handle the
request is represented by a new ServerSpan instance.
During the course of handling that request, our application might make calls to
remote services or do expensive calculations, the time spent can be represented
by child Span instances.

Spans have names and IDs and track their parent relationships. When calls are
made to remote services, the information that identifies the local child span
representing that service call is passed along to the remote service and
becomes the server span in the remote service. This allows requests to be traced
across the infrastructure.

Small bits of data, called annotations, can be attached to spans as well. This
could be the URL fetched, or how many items were sent in a batch, or whatever
else might be helpful.

	
class baseplate.core.ServerSpan(trace_id, parent_id, span_id, sampled, flags, name, context)

	A server span represents a request this server is handling.

The server span is available on the context object during requests
as the trace attribute.

	
finish(exc_info=None)

	Record the end of the span.

	Parameters

	exc_info – If the span ended because of an exception, this is
the exception information. The default is None [https://docs.python.org/3.4/library/constants.html#None] which
indicates normal exit.

	
log(name, payload=None)

	Add a log entry to the span.

Log entries are timestamped events recording notable moments in the
lifetime of a span.

	Parameters

	
	name (str [https://docs.python.org/3.4/library/stdtypes.html#str]) – The name of the log entry. This should be a stable
identifier that can apply to multiple span instances.

	payload – Optional log entry payload. This can be arbitrary data.

	
make_child(name, local=False, component_name=None)

	Return a child Span whose parent is this Span.

The child span can either be a local span representing an in-request
operation or a span representing an outbound service call.

In a server, a local span represents the time spent within a
local component performing an operation or set of operations.
The local component is some grouping of business logic,
which is then split up into operations which could each be wrapped
in local spans.

	Parameters

	
	name (str [https://docs.python.org/3.4/library/stdtypes.html#str]) – Name to identify the operation this span
is recording.

	local (bool [https://docs.python.org/3.4/library/functions.html#bool]) – Make this span a LocalSpan if True, otherwise
make this span a base Span.

	component_name (str [https://docs.python.org/3.4/library/stdtypes.html#str]) – Name to identify local component
this span is recording in if it is a local span.

	
register(observer)

	Register an observer to receive events from this span.

	
set_tag(key, value)

	Set a tag on the span.

Tags are arbitrary key/value pairs that add context and meaning to the
span, such as a hostname or query string. Observers may interpret or
ignore tags as they desire.

	Parameters

	
	key (str [https://docs.python.org/3.4/library/stdtypes.html#str]) – The name of the tag.

	value – The value of the tag, must be a string/boolean/number.

	
start()

	Record the start of the span.

This notifies any observers that the span has started, which indicates
that timers etc. should start ticking.

Spans also support the context manager protocol [https://docs.python.org/3/reference/datamodel.html#context-managers], for use with
Python’s with statement. When the context is entered, the span
calls start() and when the context is exited it automatically
calls finish().

	
class baseplate.core.Span(trace_id, parent_id, span_id, sampled, flags, name, context)

	A span represents a single RPC within a system.

	
register(observer)

	Register an observer to receive events from this span.

	
start()

	Record the start of the span.

This notifies any observers that the span has started, which indicates
that timers etc. should start ticking.

Spans also support the context manager protocol [https://docs.python.org/3/reference/datamodel.html#context-managers], for use with
Python’s with statement. When the context is entered, the span
calls start() and when the context is exited it automatically
calls finish().

	
set_tag(key, value)

	Set a tag on the span.

Tags are arbitrary key/value pairs that add context and meaning to the
span, such as a hostname or query string. Observers may interpret or
ignore tags as they desire.

	Parameters

	
	key (str [https://docs.python.org/3.4/library/stdtypes.html#str]) – The name of the tag.

	value – The value of the tag, must be a string/boolean/number.

	
log(name, payload=None)

	Add a log entry to the span.

Log entries are timestamped events recording notable moments in the
lifetime of a span.

	Parameters

	
	name (str [https://docs.python.org/3.4/library/stdtypes.html#str]) – The name of the log entry. This should be a stable
identifier that can apply to multiple span instances.

	payload – Optional log entry payload. This can be arbitrary data.

	
finish(exc_info=None)

	Record the end of the span.

	Parameters

	exc_info – If the span ended because of an exception, this is
the exception information. The default is None [https://docs.python.org/3.4/library/constants.html#None] which
indicates normal exit.

	
make_child(name, local=False, component_name=None)

	Return a child Span whose parent is this Span.

Observers

To actually do something with all these spans, Baseplate provides observer
interfaces which receive notification of events happening in the application
via calls to various methods.

The base type of observer is BaseplateObserver
which can be registered with the root Baseplate
instance using the register() method.
Whenever a new server span is created in your application (i.e. a new request
comes in to be served) the observer has its
on_server_span_created() method
called with the relevant details. This method can register
ServerSpanObserver instances with the new server
span to receive events as they happen.

Spans can be notified of five common events:

	on_start(), the span started.

	on_set_tag(), a tag was set on the span.

	on_log(), a log was entered on the span.

	on_finish(), the span finished.

	on_child_span_created(), a new child span was created.

New child spans are created in the application automatically by various client
library instrumentations e.g. for a call to a remote service or database, and
can also be created explicitly for local actions like expensive computations.
The handler can register new SpanObserver instances
with the new child span to receive events as they happen.

It’s up to the observers to attach meaning to these events. For example, the
metrics observer would start a timer
on_start() and record the elapsed time to
statsd on_finish().

	
class baseplate.core.BaseplateObserver

	Interface for an observer that watches Baseplate.

	
on_server_span_created(context, server_span)

	Called when a server span is created.

Baseplate calls this when a new request begins.

	Parameters

	
	context – The context object for this request.

	server_span (baseplate.core.ServerSpan) – The span representing
this request.

	
class baseplate.core.ServerSpanObserver

	Interface for an observer that watches the server span.

	
on_child_span_created(span)

	Called when a child span is created.

SpanObserver objects call this when a new child span is
created.

	Parameters

	span (baseplate.core.Span) – The new child span.

	
on_finish(exc_info)

	Called when the observed span is finished.

	Parameters

	exc_info – If the span ended because of an exception, the
exception info. Otherwise, None [https://docs.python.org/3.4/library/constants.html#None].

	
on_log(name, payload)

	Called when a log entry is added to the span.

	
on_set_tag(key, value)

	Called when a tag is set on the observed span.

	
on_start()

	Called when the observed span is started.

	
class baseplate.core.SpanObserver

	Interface for an observer that watches a span.

	
on_start()

	Called when the observed span is started.

	
on_set_tag(key, value)

	Called when a tag is set on the observed span.

	
on_log(name, payload)

	Called when a log entry is added to the span.

	
on_finish(exc_info)

	Called when the observed span is finished.

	Parameters

	exc_info – If the span ended because of an exception, the
exception info. Otherwise, None [https://docs.python.org/3.4/library/constants.html#None].

	
on_child_span_created(span)

	Called when a child span is created.

SpanObserver objects call this when a new child span is
created.

	Parameters

	span (baseplate.core.Span) – The new child span.

Edge Request Context

The EdgeRequestContext provides an interface into both
authentication and context information about the original request from a user. For edge
services, it provides helpers to create the initial object and serialize the context
information into the appropriate headers. Once this object is created and attached to
the context, Baseplate will automatically forward the headers to downstream services so they
can access the authentication and context data as well.

	
class baseplate.core.EdgeRequestContextFactory(secrets)

	Factory for creating EdgeRequestContext objects.

Every application should set one of these up. Edge services that talk
directly with clients should use new() directly. For internal
services, pass the object off to Baseplate’s framework integration
(Thrift/Pyramid) for automatic use.

	Parameters

	secrets (baseplate.secrets.SecretsStore) – A configured secrets
store.

	
new(authentication_token=None, loid_id=None, loid_created_ms=None, session_id=None)

	Return a new EdgeRequestContext object made from scratch.

Services at the edge that communicate directly with clients should use
this to pass on the information they get to downstream services. They
can then use this information to check authentication, run experiments,
etc.

To use this, create and attach the context early in your request flow:

auth_cookie = request.cookies["authentication"]
token = request.authentication_service.authenticate_cookie(cookie)
loid = parse_loid(request.cookies["loid"])
session = parse_session(request.cookies["session"])

edge_context = self.edgecontext_factory.new(
 authentication_token=token,
 loid_id=loid.id,
 loid_created_ms=loid.created,
 session_id=session.id,
)
edge_context.attach_context(request)

	Parameters

	
	authentication_token – (Optional) A raw authentication token
as returned by the authentication service.

	loid_id (str [https://docs.python.org/3.4/library/stdtypes.html#str]) – (Optional) ID for the current LoID in fullname
format.

	loid_created_ms (int [https://docs.python.org/3.4/library/functions.html#int]) – (Optional) Epoch milliseconds when the
current LoID cookie was created.

	session_id (str [https://docs.python.org/3.4/library/stdtypes.html#str]) – (Optional) ID for the current session cookie.

	
from_upstream(edge_header)

	Create and return an EdgeRequestContext from an upstream header.

This is generally used internally to Baseplate by framework
integrations that automatically pick up context from inbound requests.

	Parameters

	edge_header – Raw payload of Edge-Request header from upstream
service.

	
class baseplate.core.EdgeRequestContext(authn_token_validator, header)

	Contextual information about the initial request to an edge service

Construct this using an
EdgeRequestContextFactory.

	
attach_context(context)

	Attach this to the provided context object.

	Parameters

	context – request context to attach this to

	
event_fields()

	Return fields to be added to events.

	
user

	User object for the current context

	
oauth_client

	OAuthClient object for the current context

	
session

	Session object for the current context

	
service

	Service object for the current context

	
class baseplate.core.User

	Wrapper for the user values in AuthenticationToken and the LoId cookie.

	
id

	Authenticated account_id for the current User.

	Type

	account_id string or None if context authentication is invalid

	Raises

	NoAuthenticationError if there was no
authentication token, it was invalid, or the subject is not an
account.

	
is_logged_in

	Does the User have a valid, authenticated id?

	
roles

	Authenticated roles for the current User.

	Type

	set [https://docs.python.org/3.4/library/stdtypes.html#set](string)

	Raises

	NoAuthenticationError if there was no
authentication token or it was invalid

	
has_role(role)

	Does the authenticated user have the specified role?

	Parameters

	client_types (str [https://docs.python.org/3.4/library/stdtypes.html#str]) – Case-insensitive sequence role name to check.

	Type

	bool [https://docs.python.org/3.4/library/functions.html#bool]

	Raises

	NoAuthenticationError if there was no
authentication token defined for the current context

	
event_fields()

	Return fields to be added to events.

	
class baseplate.core.OAuthClient

	Wrapper for the OAuth2 client values in AuthenticationToken.

	
id

	Authenticated id for the current client

	Type

	string or None if context authentication is invalid

	Raises

	NoAuthenticationError if there was no
authentication token defined for the current context

	
is_type(*client_types)

	Is the authenticated client type one of the given types?

When checking the type of the current OauthClient, you should check
that the type “is” one of the allowed types rather than checking that
it “is not” a disallowed type.

For example:

if oauth_client.is_type("third_party"):
 ...

not:

if not oauth_client.is_type("first_party"):
 ...

	Parameters

	client_types (str [https://docs.python.org/3.4/library/stdtypes.html#str]) – Case-insensitive sequence of client type
names that you want to check.

	Type

	bool [https://docs.python.org/3.4/library/functions.html#bool]

	Raises

	NoAuthenticationError if there was no
authentication token defined for the current context

	
event_fields()

	Return fields to be added to events.

	
class baseplate.core.Session(id)

	

	
class baseplate.core.AuthenticationToken

	Information about the authenticated user.

EdgeRequestContext provides high-level helpers for extracting
data from authentication tokens. Use those instead of direct access through
this class.

	
subject

	The raw subject that is authenticated.

	
exception baseplate.core.NoAuthenticationError

	Raised when trying to use an invalid or missing authentication token.

baseplate.context

Helpers that integrate common client libraries with baseplate’s diagnostics.

This package contains modules which integrate various client libraries with
Baseplate’s instrumentation. When using these client library integrations,
trace information is passed on and metrics are collected automatically.

To use these helpers, use the
add_to_context() method on your
application’s Baseplate object:

client = SomeClient("server, server, server")
baseplate.add_to_context("my_client", SomeContextFactory(client))

and then a context-aware version of the client will show up on the
context object during requests:

def my_handler(self, context):
 context.my_client.make_some_remote_call()

Instrumented Client Libraries

	baseplate.context.cassandra: Cassandra CQL Client

	baseplate.context.hvac: Client for using Vault's advanced features

	baseplate.context.kombu: Client for publishing to queues

	baseplate.context.memcache: Memcached Client

	baseplate.context.redis: Redis Client

	baseplate.context.sqlalchemy: SQL Client for relational databases (e.g. PostgreSQL)

	baseplate.context.thrift: Thrift client for RPC to other backend services

DIY: The Factory

If a library you want isn’t supported here, it can be added to your own
application by implementing ContextFactory.

	
class baseplate.context.ContextFactory

	An interface for adding stuff to the context object.

Objects implementing this interface can be passed to
add_to_context(). The return value of
make_object_for_context() will be added to the context
object with the name specified in add_to_context.

	
make_object_for_context(name, server_span)

	Return an object that can be added to the context object.

baseplate.context.cassandra

Configuration Parsing

	
baseplate.context.cassandra.cluster_from_config(app_config, prefix=u'cassandra.', **kwargs)

	Make a Cluster from a configuration dictionary.

The keys useful to cluster_from_config() should be prefixed, e.g.
cassandra.contact_points etc. The prefix argument specifies the
prefix used to filter keys. Each key is mapped to a corresponding keyword
argument on the Cluster [https://datastax.github.io/python-driver/api/cassandra/cluster.html#cassandra.cluster.Cluster] constructor. Any
keyword arguments given to this function will be passed through to the
Cluster [https://datastax.github.io/python-driver/api/cassandra/cluster.html#cassandra.cluster.Cluster] constructor. Keyword arguments take
precedence over the configuration file.

Supported keys:

	contact_points (required): comma delimited list of contact points to
try connecting for cluster discovery

	port: The server-side port to open connections to.

Classes

	
class baseplate.context.cassandra.CassandraContextFactory(session)

	Cassandra session context factory.

This factory will attach a proxy object which acts like a
cassandra.cluster.Session [https://datastax.github.io/python-driver/api/cassandra/cluster.html#cassandra.cluster.Session] to an attribute on the context
object. The execute, execute_async or prepare methods will
automatically record diagnostic information.

	Parameters

	session (cassandra.cluster.Session [https://datastax.github.io/python-driver/api/cassandra/cluster.html#cassandra.cluster.Session]) – A configured session object.

	
class baseplate.context.cassandra.CQLMapperContextFactory(session)

	CQLMapper ORM connection context factory

This factory will attach a new CQLMapper
cqlmapper.connection.Connection to an attribute on the
context object. This Connection object will use the same proxy
object that CassandraContextFactory attaches to a context to run queries
so the execute command will automatically record diagnostic information.

	Parameters

	session (cassandra.cluster.Session [https://datastax.github.io/python-driver/api/cassandra/cluster.html#cassandra.cluster.Session]) – A configured session object.

baseplate.context.hvac

Integration with HVAC, a Vault Python client, for advanced Vault features.

See HVAC’s README [https://github.com/ianunruh/hvac/blob/master/README.md] for documentation on the methods available from its client.

Note

The SecretsStore handles the most
common use case of Vault in a Baseplate application: secure retrieval of
secret tokens. This client is only necessary when taking advantage of more
advanced features of Vault such as the Transit backend [https://www.vaultproject.io/docs/secrets/transit/] or Cubbyholes [https://www.vaultproject.io/docs/secrets/cubbyhole/index.html].
If these don’t sound familiar, check out the secrets store before digging
in here.

Configuration Parsing

	
baseplate.context.hvac.hvac_factory_from_config(app_config, secrets_store, prefix=u'vault.')

	Make an HVAC client factory from a configuration dictionary.

The keys useful to hvac_factory_from_config() should be prefixed,
e.g. vault.timeout. The prefix argument specifies the prefix used
to filter keys.

Supported keys:

	timeout: How long to wait for calls to Vault.

	Parameters

	
	app_config (dict [https://docs.python.org/3.4/library/stdtypes.html#dict]) – The raw application configuration.

	secrets_store (baseplate.secrets.SecretsStore) – A configured secrets
store from which we can get a Vault authentication token.

	prefix (str [https://docs.python.org/3.4/library/stdtypes.html#str]) – The prefix for configuration keys.

Classes

	
class baseplate.context.hvac.HvacContextFactory(secrets_store, timeout)

	HVAC client context factory.

This factory will attach a proxy object which acts like an
hvac.Client to an attribute on the context object. All
methods that talk to Vault will be automatically instrumented for tracing
and diagnostic metrics.

	Parameters

	
	secrets_store (baseplate.secrets.SecretsStore) – Configured secrets
store from which we can get a Vault authentication token.

	timeout (datetime.timedelta [https://docs.python.org/3.4/library/datetime.html#datetime.timedelta]) – How long to wait for calls to Vault.

baseplate.context.kombu

Configuration Parsing

	
baseplate.context.kombu.connection_from_config(app_config, prefix, **kwargs)

	Make a Connection from a configuration dictionary.

The keys useful to connection_from_config() should be prefixed,
e.g. amqp.hostname etc. The prefix argument specifies the
prefix used to filter keys. Each key is mapped to a corresponding keyword
argument on the Connection constructor. Any
keyword arguments given to this function will be passed through to the
Connection constructor. Keyword arguments
take precedence over the configuration file.

Supported keys:

	hostname

	virtual_host

	
baseplate.context.kombu.exchange_from_config(app_config, prefix, **kwargs)

	Make an Exchange from a configuration dictionary.

The keys useful to exchange_from_config() should be prefixed,
e.g. amqp.exchange_name etc. The prefix argument specifies the
prefix used to filter keys. Each key is mapped to a corresponding keyword
argument on the Exchange constructor. Any keyword
arguments given to this function will be passed through to the
Exchange constructor. Keyword arguments take precedence
over the configuration file.

Supported keys:

	exchange_name

	exchange_type

Classes

	
class baseplate.context.kombu.KombuProducerContextFactory(connection, exchange, max_connections=None)

	KombuProducer context factory.

This factory will attach a proxy object which acts like a
kombu.Producer to an attribute on the context object.
The publish() method will
automatically record diagnostic information.

	Parameters

	
	connection (kombu.connection.Connection) – A configured connection
object.

	exchange (kombu.Exchange) – A configured exchange object

	max_connections (int [https://docs.python.org/3.4/library/functions.html#int]) – The maximum number of connections.

	
class baseplate.context.kombu.KombuProducer(name, span, connection, exchange, producers)

	
	
publish(body, routing_key=None, **kwargs)

	Publish a message to the routing_key.

	Parameters

	
	body (str [https://docs.python.org/3.4/library/stdtypes.html#str]) – The message body.

	routing_key (str [https://docs.python.org/3.4/library/stdtypes.html#str]) – The routing key to publish to.

See Kombu Documentation [http://docs.celeryproject.org/projects/kombu/en/latest/reference/kombu.html#kombu.Producer.publish#noqa] for other arguments.

baseplate.context.memcache

Configuration Parsing

	
baseplate.context.memcache.pool_from_config(app_config, prefix=u'memcache.', serializer=None, deserializer=None)

	Make a PooledClient from a configuration dictionary.

The keys useful to pool_from_config() should be prefixed, e.g.
memcache.endpoint, memcache.max_pool_size, etc. The prefix
argument specifies the prefix used to filter keys. Each key is mapped to a
corresponding keyword argument on the
PooledClient [https://pymemcache.readthedocs.io/en/latest/apidoc/pymemcache.client.base.html#pymemcache.client.base.PooledClient] constructor.

Supported keys:

	
	endpoint (required): a string representing a host and port to connect

	to memcached service, e.g. localhost:11211 or 127.0.0.1:11211.

	
	max_pool_size: an integer for the maximum pool size to use, by default

	this is 2147483648.

	
	connect_timeout: a float representing seconds to wait for a connection to

	memcached server. Defaults to the underlying socket default timeout.

	
	timeout: a float representing seconds to wait for calls on the

	socket connected to memcache. Defaults to the underlying socket default
timeout.

	Parameters

	
	app_config (dict [https://docs.python.org/3.4/library/stdtypes.html#dict]) – the config dictionary

	prefix (str [https://docs.python.org/3.4/library/stdtypes.html#str]) – prefix for config keys

	serializer (callable) – function to serialize values to strings suitable
for being stored in memcached. An example is
make_dump_and_compress_fn().

	deserializer (callable) – function to convert strings returned from
memcached to arbitrary objects, must be compatible with serializer.
An example is decompress_and_load().

	Returns

	pymemcache.client.base.PooledClient [https://pymemcache.readthedocs.io/en/latest/apidoc/pymemcache.client.base.html#pymemcache.client.base.PooledClient]

Classes

	
class baseplate.context.memcache.MemcacheContextFactory(pooled_client)

	Memcache client context factory.

This factory will attach a
MonitoredMemcacheConnection to an
attribute on the context object. When memcache commands are
executed via this connection object, they will use connections from the
provided PooledClient [https://pymemcache.readthedocs.io/en/latest/apidoc/pymemcache.client.base.html#pymemcache.client.base.PooledClient] and automatically
record diagnostic information.

	Parameters

	pooled_client (pymemcache.client.base.PooledClient [https://pymemcache.readthedocs.io/en/latest/apidoc/pymemcache.client.base.html#pymemcache.client.base.PooledClient]) – A pooled client.

	Returns

	MonitoredMemcacheConnection

	
class baseplate.context.memcache.MonitoredMemcacheConnection(context_name, server_span, pooled_client)

	Memcache connection that collects diagnostic information.

This connection acts like a
PooledClient [https://pymemcache.readthedocs.io/en/latest/apidoc/pymemcache.client.base.html#pymemcache.client.base.PooledClient] except that operations are
wrapped with diagnostic collection. Some methods may not yet be wrapped
with monitoring. Please request assistance if any needed methods are not
being monitored.

Serialization/deserialization helpers

	
baseplate.context.memcache.lib.decompress_and_load(key, serialized, flags)

	Deserialize data.

This should be paired with
make_dump_and_compress_fn().

	Parameters

	
	key (str [https://docs.python.org/3.4/library/stdtypes.html#str]) – the memcached key.

	serialized (str [https://docs.python.org/3.4/library/stdtypes.html#str]) – the serialized object returned from memcached.

	flags (int [https://docs.python.org/3.4/library/functions.html#int]) – value stored and returned from memcached for the client
to use to indicate how the value was serialized.

	Returns

	The deserialized value.

	
baseplate.context.memcache.lib.make_dump_and_compress_fn(min_compress_length=0, compress_level=1)

	Make a serializer.

This should be paired with
decompress_and_load().

The resulting method is a chain of json.loads() [https://docs.python.org/3.4/library/json.html#json.loads] and zlib
compression. Values that are not JSON serializable will result in a
TypeError [https://docs.python.org/3.4/library/exceptions.html#TypeError].

	Parameters

	
	min_compress_length (int [https://docs.python.org/3.4/library/functions.html#int]) – the minimum serialized string length to
enable zlib compression. 0 disables compression.

	compress_level (int [https://docs.python.org/3.4/library/functions.html#int]) – zlib compression level. 0 disables compression
and 9 is the maximum value.

	Returns

	The serializer.

	
baseplate.context.memcache.lib.decompress_and_unpickle(key, serialized, flags)

	Deserialize data stored by pylibmc.

Warning

This should only be used when sharing caches with applications
using pylibmc (like r2). New applications should use the safer and
future proofed
decompress_and_load().

	Parameters

	
	key (str [https://docs.python.org/3.4/library/stdtypes.html#str]) – the memcached key.

	serialized (str [https://docs.python.org/3.4/library/stdtypes.html#str]) – the serialized object returned from memcached.

	flags (int [https://docs.python.org/3.4/library/functions.html#int]) – value stored and returned from memcached for the client
to use to indicate how the value was serialized.

	Returns str value

	the deserialized value.

	
baseplate.context.memcache.lib.make_pickle_and_compress_fn(min_compress_length=0, compress_level=1)

	Make a serializer compatible with pylibmc readers.

The resulting method is a chain of pickle.dumps() [https://docs.python.org/3.4/library/pickle.html#pickle.dumps] and zlib
compression. This should be paired with
decompress_and_unpickle().

Warning

This should only be used when sharing caches with applications
using pylibmc (like r2). New applications should use the safer and
future proofed
make_dump_and_compress_fn().

	Parameters

	
	min_compress_length (int [https://docs.python.org/3.4/library/functions.html#int]) – the minimum serialized string length to
enable zlib compression. 0 disables compression.

	compress_level (int [https://docs.python.org/3.4/library/functions.html#int]) – zlib compression level. 0 disables compression
and 9 is the maximum value.

	Returns func memcache_serializer

	the serializer method.

baseplate.context.redis

Configuration Parsing

Classes

baseplate.context.sqlalchemy

Configuration Parsing

	
sqlalchemy.engine_from_config(configuration, prefix='sqlalchemy.', **kwargs)

	Make an engine from a configuration dictionary.

The keys useful to engine_from_config() should be
prefixed, e.g. sqlalchemy.url etc. The prefix argument specifies the
prefix used to filter keys. Each key is mapped to a corresponding keyword
argument on create_engine() [https://docs.sqlalchemy.org/en/latest/core/engines.html#sqlalchemy.create_engine]. Any keyword arguments
given to this function will be passed through. Keyword arguments take
precedence over the configuration file.

Classes

	
class baseplate.context.sqlalchemy.SQLAlchemyEngineContextFactory(engine)

	SQLAlchemy core engine context factory.

This factory will attach a SQLAlchemy sqlalchemy.engine.Engine [https://docs.sqlalchemy.org/en/latest/core/connections.html#sqlalchemy.engine.Engine]
to an attribute on the context object. All cursor (query) execution
will automatically record diagnostic information.

Additionally, the trace and span ID will be added as a comment to the text
of the SQL statement. This is to aid correlation of queries with requests.

See also

The engine is the low-level SQLAlchemy API. If you want to use the ORM,
consider using
SQLAlchemySessionContextFactory
instead.

	Parameters

	engine (sqlalchemy.engine.Engine [https://docs.sqlalchemy.org/en/latest/core/connections.html#sqlalchemy.engine.Engine]) – A configured SQLAlchemy engine.

	
class baseplate.context.sqlalchemy.SQLAlchemySessionContextFactory(engine)

	SQLAlchemy ORM session context factory.

This factory will attach a new SQLAlchemy
sqlalchemy.orm.session.Session [https://docs.sqlalchemy.org/en/latest/orm/session_api.html#sqlalchemy.orm.session.Session] to an attribute on the
context object. All cursor (query) execution will automatically
record diagnostic information.

The session will be automatically closed, but not committed or rolled back,
at the end of each request.

See also

The session is part of the high-level SQLAlchemy ORM API. If you want
to do raw queries, consider using
SQLAlchemyEngineContextFactory
instead.

	Parameters

	engine (sqlalchemy.engine.Engine [https://docs.sqlalchemy.org/en/latest/core/connections.html#sqlalchemy.engine.Engine]) – A configured SQLAlchemy engine.

baseplate.context.thrift

	
class baseplate.context.thrift.ThriftContextFactory(pool, client_cls)

	Thrift client pool context factory.

This factory will attach a proxy object with the same interface as your
thrift client to an attribute on the context object. When a thrift
method is called on this proxy object, it will check out a connection from
the connection pool and execute the RPC, automatically recording diagnostic
information.

	Parameters

	
	pool (baseplate.thrift_pool.ThriftConnectionPool) – The connection
pool.

	client_cls – The class object of a Thrift-generated client class,
e.g. YourService.Client.

The proxy object has a retrying method which takes the same parameters
as RetryPolicy.new and acts as
a context manager. The context manager returns another proxy object where
Thrift service method calls will be automatically retried with the
specified retry policy when transient errors occur:

with context.my_service.retrying(attempts=3) as svc:
 svc.some_method()

baseplate.integration

Helpers for integration with various application frameworks.

This package contains modules which integrate Baseplate with common
application frameworks.

See one of the submodules below for your framework of choice.

Thrift

Thrift integration for Baseplate.

This module provides an implementation of TProcessorEventHandler
which integrates Baseplate’s facilities into the Thrift request lifecycle.

An abbreviated example of it in use:

def make_processor(app_config):
 baseplate = Baseplate()

 handler = MyHandler()
 processor = my_thrift.MyService.ContextProcessor(handler)

 event_handler = BaseplateProcessorEventHandler(logger, baseplate)
 processor.setEventHandler(event_handler)

 return processor

	
class baseplate.integration.thrift.BaseplateProcessorEventHandler(logger, baseplate, edge_context_factory=None)

	Processor event handler for Baseplate.

	Parameters

	
	logger (logging.Logger [https://docs.python.org/3.4/library/logging.html#logging.Logger]) – The logger to use for error and debug logging.

	baseplate (baseplate.core.Baseplate) – The baseplate instance for your
application.

	edge_context_factory (baseplate.core.EdgeRequestContextFactory) – A
configured factory for handling edge request context.

Pyramid

Pyramid integration for Baseplate.

This module provides a configuration extension for Pyramid which integrates
Baseplate’s facilities into the Pyramid WSGI request lifecycle.

An abbreviated example of it in use:

def make_app(app_config):
 configurator = Configurator()

 baseplate = Baseplate()
 baseplate_config = BaseplateConfigurator(
 baseplate,
 trust_trace_headers=True,
)
 configurator.include(baseplate_config.includeme)

 return configurator.make_wsgi_app()

Warning

Because of how Baseplate instruments Pyramid, you should not make an
exception view [https://docs.pylonsproject.org/projects/pyramid_cookbook/en/latest/pylons/exceptions.html#exception-views] prevent Baseplate from seeing the unhandled error and
reporting it appropriately.

	
class baseplate.integration.pyramid.BaseplateConfigurator(baseplate, trust_trace_headers=False, edge_context_factory=None)

	Config extension to integrate Baseplate into Pyramid.

	Parameters

	
	baseplate (baseplate.core.Baseplate) – The Baseplate instance for your
application.

	trust_trace_headers (bool [https://docs.python.org/3.4/library/functions.html#bool]) – Should this application trust trace
headers from the client? If True, trace headers in inbound requests
will be used for the server span. If False, new random trace IDs
will be generated for each request.

	edge_context_factory (baseplate.core.EdgeRequestContextFactory) – A
configured factory for handling edge request context.

Warning

Do not set trust_trace_headers to True unless you are sure your
application is only accessible by trusted sources (usually backend-only
services).

Events

Within its Pyramid integration, Baseplate will emit events at various stages
of the request lifecycle that services can hook into.

	
class baseplate.integration.pyramid.ServerSpanInitialized(request)

	Event that Baseplate fires after creating the ServerSpan for a Request.

This event will be emitted before the Request is passed along to it’s
handler. Baseplate initializes the ServerSpan in response to a
pyramid.events.ContextFound [http://docs.pylonsproject.org/projects/pyramid/en/1.5-branch/api/events.html#pyramid.events.ContextFound] event emitted by Pyramid so while
we can guarantee what Baseplate has done when this event is emitted, we
cannot guarantee that any other subscribers to
pyramid.events.ContextFound [http://docs.pylonsproject.org/projects/pyramid/en/1.5-branch/api/events.html#pyramid.events.ContextFound] have been called or not.

baseplate.diagnostics

Observers

Observers watch Baseplate for events that happen during requests, such as
requests starting and ending and service calls being made. Observers can also
add attributes to the context object for your application to use during
the request. Under the hood, the context factories
(baseplate.context) are implemented as observers. All of the
following observers can be configured with Convenience Methods on your
application’s Baseplate object.

	
class baseplate.diagnostics.logging.LoggingBaseplateObserver

	Logging observer.

This observer adds request context to the thread-local state so that the
log formatters can give more informative logs. Currently, this just sets
the thread name to the current request’s trace ID.

	
class baseplate.diagnostics.metrics.MetricsBaseplateObserver(client)

	Metrics collecting observer.

This observer reports metrics to statsd. It does two important things:

	it tracks the time taken in serving each request.

	it batches all metrics generated during a request into as few packets
as possible.

The batch is accessible to your application during requests as the
metrics attribute on the context object.

	Parameters

	client (baseplate.metrics.Client) – The client where metrics will be
sent.

	
class baseplate.diagnostics.sentry.SentryBaseplateObserver(raven)

	Error reporting observer.

This observer reports unexpected exceptions to Sentry.

The raven client is accessible to your application during requests as the
sentry attribute on the context object.

	Parameters

	client (raven.Client [https://docs.sentry.io/clients/python/api/#raven.Client]) – A configured raven client.

	
class baseplate.diagnostics.tracing.TraceBaseplateObserver(tracing_client)

	Distributed tracing observer.

This observer handles Zipkin-compatible distributed tracing
instrumentation for both inbound and outbound requests.
Baseplate span-specific tracing observers (TraceSpanObserver
and TraceServerSpanObserver) are registered for tracking,
serializing, and recording span data.

	Parameters

	client (baseplate.diagnostics.tracing.TracingClient) – The client
where metrics will be sent.

baseplate

	
baseplate.metrics_client_from_config(raw_config)

	Configure and return a metrics client.

This expects two configuration options:

	metrics.namespace

	The root key to prefix all metrics in this application with.

	metrics.endpoint

	A host:port pair, e.g. localhost:2014. If an empty string, a
client that discards all metrics will be returned.

	Parameters

	raw_config (dict [https://docs.python.org/3.4/library/stdtypes.html#dict]) – The application configuration which should have
settings for the metrics client.

	Returns

	A configured client.

	Return type

	baseplate.metrics.Client

	
baseplate.tracing_client_from_config(raw_config, log_if_unconfigured=True)

	Configure and return a tracing client.

This expects one configuration option and can take many optional ones:

	tracing.service_name

	The name for the service this observer is registered to.

	tracing.endpoint (optional)

	(Deprecated in favor of the sidecar model.) Destination to record span data.

	tracing.queue_name (optional)

	Name of POSIX queue where spans are recorded

	tracing.max_span_queue_size (optional)

	Span processing queue limit.

	tracing.num_span_workers (optional)

	Number of worker threads for span processing.

	tracing.span_batch_interval (optional)

	Wait time for span processing in seconds.

	tracing.num_conns (optional)

	Pool size for remote recorder connection pool.

	tracing.sample_rate (optional)

	Percentage of unsampled requests to record traces for (e.g. “37%”)

	Parameters

	
	raw_config (dict [https://docs.python.org/3.4/library/stdtypes.html#dict]) – The application configuration which should have
settings for the tracing client.

	log_if_unconfigured (bool [https://docs.python.org/3.4/library/functions.html#bool]) – When the client is not configured, should
trace spans be logged or discarded silently?

	Returns

	A configured client.

	Return type

	baseplate.diagnostics.tracing.TracingClient

	
baseplate.error_reporter_from_config(raw_config, module_name)

	Configure and return a error reporter.

This expects one configuration option and can take many optional ones:

	sentry.dsn

	The DSN provided by Sentry. If blank, the reporter will discard events.

	sentry.site (optional)

	An arbitrary string to identify this client installation.

	sentry.environment (optional)

	The environment your application is running in.

	sentry.exclude_paths (optional)

	Comma-delimited list of module prefixes to ignore when discovering
where an error came from.

	sentry.include_paths (optional)

	Comma-delimited list of paths to include for consideration when
drilling down to an exception.

	sentry.ignore_exceptions (optional)

	Comma-delimited list of fully qualified names of exception classes
(potentially with * globs) to not report.

	sentry.sample_rate (optional)

	Percentage of errors to report. (e.g. “37%”)

	sentry.processors (optional)

	Comma-delimited list of fully qualified names of processor classes
to apply to events before sending to Sentry.

Example usage:

error_reporter_from_config(app_config, __name__)

	Parameters

	
	raw_config (dict [https://docs.python.org/3.4/library/stdtypes.html#dict]) – The application configuration which should have
settings for the error reporter.

	module_name (str [https://docs.python.org/3.4/library/stdtypes.html#str]) – __name__ of the root module of the application.

	Return type

	raven.Client [https://docs.sentry.io/clients/python/api/#raven.Client]

baseplate.config

Configuration parsing and validation.

This module provides parse_config which turns a dictionary of stringy keys
and values into a structured and typed configuration object.

For example, an INI file like the following:

[app:main]
simple = true
cards = clubs, spades, diamonds
nested.once = 1
nested.really.deep = 3 seconds
some_file = /var/lib/whatever.txt
sample_rate = 37.1%
interval = 30 seconds

Might be parsed like the following. Note: when running under the baseplate
server, The config_parser.items(...) step is taken care of for you and
raw_config is passed as the only argument to your factory function.

>>> raw_config = dict(config_parser.items("app:main"))

>>> CARDS = config.OneOf(clubs=1, spades=2, diamonds=3, hearts=4)
>>> cfg = config.parse_config(raw_config, {
... "simple": config.Boolean,
... "cards": config.TupleOf(CARDS),
... "nested": {
... "once": config.Integer,
...
... "really": {
... "deep": config.Timespan,
... },
... },
... "some_file": config.File(mode="r"),
... "optional": config.Optional(config.Integer, default=9001),
... "sample_rate": config.Percent,
... "interval": config.Fallback(config.Timespan, config.Integer),
... })

>>> print(cfg.simple)
True

>>> print(cfg.cards)
[1, 2, 3]

>>> print(cfg.nested.really.deep)
0:00:03

>>> cfg.some_file.read()
'cool'
>>> cfg.some_file.close()

>>> cfg.sample_rate
0.371

>>> print(cfg.interval)
0:00:30

Parser

	
baseplate.config.parse_config(config, spec)

	Parse options against a spec and return a structured representation.

	Parameters

	
	config (dict [https://docs.python.org/3.4/library/stdtypes.html#dict]) – The raw stringy configuration dictionary.

	spec (dict [https://docs.python.org/3.4/library/stdtypes.html#dict]) – A specification of what the config should look like.

	Raises

	ConfigurationError The configuration violated the spec.

	Returns

	A structured configuration object.

Value Types

Each option can have a type specified. Some types compose with other types to
make complicated expressions.

	
baseplate.config.String(text)

	A raw string.

	
baseplate.config.Float(text)

	A floating-point number.

	
baseplate.config.Integer(text=None, base=10)

	An integer.

To prevent mistakes, this will raise an error if the user attempts
to configure a non-whole number.

	Parameters

	base (int [https://docs.python.org/3.4/library/functions.html#int]) – (Optional) If specified, the base of the integer to parse.

	
baseplate.config.Boolean(text)

	True or False, case insensitive.

	
baseplate.config.Endpoint(text)

	A remote endpoint to connect to.

Returns an EndpointConfiguration.

If the endpoint is a hostname:port pair, the family will be
socket.AF_INET [https://docs.python.org/3.4/library/socket.html#socket.AF_INET] and address will be a two-tuple of host and
port, as expected by socket [https://docs.python.org/3.4/library/socket.html#module-socket].

If the endpoint contains a slash (/), it will be interpreted as a path
to a UNIX domain socket. The family will be socket.AF_UNIX [https://docs.python.org/3.4/library/socket.html#socket.AF_UNIX]
and address will be the path as a string.

	
baseplate.config.Timespan(text)

	A span of time.

This takes a string of the form “1 second” or “3 days” and returns a
datetime.timedelta [https://docs.python.org/3.4/library/datetime.html#datetime.timedelta] representing that span of time.

Units supported are: milliseconds, seconds, minutes, hours, days.

	
baseplate.config.Base64(text)

	A base64 encoded block of data.

This is useful for arbitrary binary blobs.

	
baseplate.config.File(mode=u'r')

	A path to a file.

This takes a path to a file and returns an open file object, like
returned by open() [https://docs.python.org/3.4/library/functions.html#open].

	Parameters

	mode (str [https://docs.python.org/3.4/library/stdtypes.html#str]) – an optional string that specifies the mode in
which the file is opened.

	
baseplate.config.Percent(text)

	A percentage.

This takes a string of the form “37.2%” or “44%” and
returns a float in the range [0.0, 1.0].

	
baseplate.config.UnixUser(text)

	A Unix user name.

The parsed value will be the integer user ID.

	
baseplate.config.UnixGroup(text)

	A Unix group name.

The parsed value will be the integer group ID.

	
baseplate.config.OneOf(**options)

	One of several choices.

For each option, the name is what should be in the configuration file
and the value is what it is mapped to.

For example:

OneOf(hearts="H", spades="S")

would parse:

"hearts"

into:

"H"

	
baseplate.config.TupleOf(T)

	A comma-delimited list of type T.

At least one value must be provided. If you want an empty list
to be a valid choice, wrap with Optional().

If you need something custom or fancy for your application, just use a
callable which takes a string and returns the parsed value or raises
ValueError [https://docs.python.org/3.4/library/exceptions.html#ValueError].

Combining Types

These options are used in combination with other types to form more complex
configurations.

	
baseplate.config.Optional(T, default=None)

	An option of type T, or default if not configured.

	
baseplate.config.Fallback(T1, T2)

	An option of type T1, or if that fails to parse, of type T2.

This is useful for backwards-compatible configuration changes.

	
baseplate.config.DictOf(spec)

	A group of options of a given type.

This is useful for providing data to the application without the
application having to know ahead of time all of the possible keys.

[app:main]
population.cn = 1383890000
population.in = 1317610000
population.us = 325165000
population.id = 263447000
population.br = 207645000

>>> cfg = config.parse_config(raw_config, {
... "population": config.DictOf(config.Integer),
... })

>>> len(cfg.population)
5

>>> cfg.population["br"]
207645000

It can also be combined with other configuration specs or parsers to parse
more complicated structures:

[app:main]
countries.cn.population = 1383890000
countries.cn.capital = Beijing
countries.in.population = 1317610000
countries.in.capital = New Delhi
countries.us.population = 325165000
countries.us.capital = Washington D.C.
countries.id.population = 263447000
countries.id.capital = Jakarta
countries.br.population = 207645000
countries.br.capital = Brasília

>>> cfg = config.parse_config(raw_config, {
... "countries": config.DictOf({
... "population": config.Integer,
... "capital": config.String,
... }),
... })

>>> len(cfg.countries)
5

>>> cfg.countries["cn"].capital
'Beijing'

>>> cfg.countries["id"].population
263447000

Data Types

	
class baseplate.config.EndpointConfiguration

	A description of a remote endpoint.

This is a 2-tuple of (family and address).

	family

	One of socket.AF_INET [https://docs.python.org/3.4/library/socket.html#socket.AF_INET] or socket.AF_UNIX [https://docs.python.org/3.4/library/socket.html#socket.AF_UNIX].

	address

	An address appropriate for the family.

See also

baseplate.config.Endpoint()

Exceptions

	
exception baseplate.config.ConfigurationError(key, error)

	Raised when the configuration violates the spec.

baseplate.crypto

Utilities for common cryptographic operations.

message = "Hello, world!"

secret = secrets.get_versioned("some_signing_key")
signature = make_signature(
 secret, message, max_age=datetime.timedelta(days=1))

try:
 validate_signature(secret, message, signature)
except SignatureError:
 print("Oh no, it was invalid!")
else:
 print("Message was valid!")

Message was valid!

Message Signing

	
baseplate.crypto.make_signature(secret, message, max_age)

	Return a signature for the given message.

To ensure that key rotation works automatically, always fetch the secret
token from the secret store immediately before use and do not cache / save
the token anywhere. The current version of the secret will be used to
sign the token.

	Parameters

	
	secret (baseplate.secrets.VersionedSecret) – The secret signing key
from the secret store.

	message (str [https://docs.python.org/3.4/library/stdtypes.html#str]) – The message to sign.

	max_age (datetime.timedelta [https://docs.python.org/3.4/library/datetime.html#datetime.timedelta]) – The amount of time in the future
the signature will be valid for.

	Returns

	An encoded signature.

	
baseplate.crypto.validate_signature(secret, message, signature)

	Validate and assert a message’s signature is correct.

If the signature is valid, the function will return normally with a
SignatureInfo with some details about the signature.
Otherwise, an exception will be raised.

To ensure that key rotation works automatically, always fetch the secret
token from the secret store immediately before use and do not cache / save
the token anywhere. All active versions of the secret will be checked when
validating the signature.

	Parameters

	
	secret (baseplate.secrets.VersionedSecret) – The secret signing key
from the secret store.

	message (str [https://docs.python.org/3.4/library/stdtypes.html#str]) – The message payload to validate.

	signature (str [https://docs.python.org/3.4/library/stdtypes.html#str]) – The signature supplied with the message.

	Raises

	UnreadableSignatureError The signature is corrupt.

	Raises

	IncorrectSignatureError The digest is incorrect.

	Raises

	ExpiredSignatureError The signature expired.

	Return type

	SignatureInfo

	
class baseplate.crypto.SignatureInfo

	Information about a valid signature.

	Variables

	
	version (int [https://docs.python.org/3.4/library/functions.html#int]) – The version of the packed signature format.

	expiration (int [https://docs.python.org/3.4/library/functions.html#int]) – The time, in seconds since the UNIX epoch, at which
the signature will expire.

Exceptions

	
exception baseplate.crypto.SignatureError

	Base class for all message signing related errors.

	
exception baseplate.crypto.UnreadableSignatureError

	Raised when the signature is corrupt or wrongly formatted.

	
exception baseplate.crypto.IncorrectSignatureError

	Raised when the signature is readable but does not match the message.

	
exception baseplate.crypto.ExpiredSignatureError(expiration)

	Raised when the signature is valid but has expired.

The expiration attribute is the time (as seconds since the UNIX epoch)
at which the signature expired.

Utilities

	
baseplate.crypto.constant_time_compare()

	compare_digest(a, b) -> bool

Return ‘a == b’. This function uses an approach designed to prevent
timing analysis, making it appropriate for cryptography.
a and b must both be of the same type: either str (ASCII only),
or any type that supports the buffer protocol (e.g. bytes).

Note: If a and b are of different lengths, or if an error occurs,
a timing attack could theoretically reveal information about the
types and lengths of a and b–but not their values.

baseplate.events

Building Events

Thrift Schema v2 Events

For modern Thrift-based events: import the event schemas into your project,
instantiate and fill out an event object, and pass it into the queue:

import time
import uuid

from baseplate.events import EventQueue, serialize_v2_event

from event_schemas.event.ttypes import Event

def make_wsgi_app(app_config):
 ...

 queue = EventQueue("v2", event_serializer=serialize_v2_event)
 baseplate.add_to_context("events_v2", queue)

 ...

def my_handler(request):
 event = Event(
 source="baseplate",
 action="test",
 noun="baseplate",
 client_timestamp=time.time() * 1000,
 uuid=str(uuid.uuid4()),
)
 request.events_v2.put(ev2)

Legacy schemaless events

For legacy schemaless events, you can use these helper objects to build
payloads:

	
class baseplate.events.FieldKind

	Field kinds.

	
NORMAL = None

	For fields normal fields with no hashing/indexing requirements.

	
OBFUSCATED = u'obfuscated_data'

	For fields containing sensitive information like IP addresses that must
be treated with care.

	
HIGH_CARDINALITY = u'interana_excluded'

	For fields that should not be indexed due to high cardinality
(e.g. not used in Interana)

	
class baseplate.events.Event(topic, event_type, timestamp=None, id=None)

	An event.

	
get_field(key)

	Get the value of a field in the event.

If the field is not present, None [https://docs.python.org/3.4/library/constants.html#None] is returned.

	Parameters

	key (str [https://docs.python.org/3.4/library/stdtypes.html#str]) – The name of the field.

	
set_field(key, value, obfuscate=False, kind=<FieldKind.NORMAL: None>)

	Set the value for a field in the event.

	Parameters

	
	key (str [https://docs.python.org/3.4/library/stdtypes.html#str]) – The name of the field.

	value – The value to set the field to. Should be JSON
serializable.

	kind (baseplate.events.FieldKind) – The kind the field is.
Used to determine what section of the payload the field belongs
in when serialized.

Queing Events

	
class baseplate.events.EventQueue(name, event_serializer=<function serialize_v1_event>)

	A queue to transfer events to the publisher.

	Parameters

	
	name (str [https://docs.python.org/3.4/library/stdtypes.html#str]) – The name of the event queue to send to. This specifies
which publisher should send the events which can be useful for routing
to different event pipelines (prod/test/v2 etc.).

	event_serializer (callable) – A callable that takes an event object
and returns serialized bytes ready to send on the wire. See below for
options.

	
put(event)

	Add an event to the queue.

The queue is local to the server this code is run on. The event
publisher on the server will take these events and send them to the
collector.

	Parameters

	event – The event to send. The type of event object passed in
depends on the selected event_serializer.

	Raises

	EventTooLargeError The serialized event is too large.

	Raises

	EventQueueFullError The queue is full. Events are
not being published fast enough.

The EventQueue also implements
ContextFactory so it can be used with
add_to_context():

event_queue = EventQueue("production")
baseplate.add_to_context("events_production", event_queue)

It can then be used from the context object during requests:

def some_service_method(self, context):
 event = Event(...)
 context.events_production.put(event)

Serializers

The event_serializer parameter to EventQueue is a callable
which serializes a given event object. The default is the original schemaless
format. This can be overridden by passing in a different serializer. Baseplate
comes with a serializer for the new Thrift schema based V2 event system as
well:

	
baseplate.events.serialize_v1_event(event)

	Serialize an Event object for the V1 event protocol.

	Parameters

	event (baseplate.events.Event) – An event object.

	
baseplate.events.serialize_v2_event(event)

	Serialize a Thrift struct to bytes for the V2 event protocol.

	Parameters

	event – A Thrift struct from the event schemas.

Exceptions

	
exception baseplate.events.EventError

	Base class for event related exceptions.

	
exception baseplate.events.EventTooLargeError(size)

	Raised when a serialized event is too large to send.

	
exception baseplate.events.EventQueueFullError

	Raised when the queue of events is full.

This usually indicates that the event publisher is having trouble talking
to the event collector.

Publishing Events

Events that are put onto an EventQueue are consumed by a separate
process and published to the remote event collector service. The publisher is
in baseplate and can be run as follows:

python -m baseplate.events.publisher --queue-name something config_file.ini

The publisher will look at the specified INI file to find its configuration.
Given a queue name of something (as in the example above), it will expect a
section in the INI file called [event-publisher:something] with content
like below:

[event-publisher:something]
collector.hostname = some-domain.example.com

key.name = NameOfASecretKey
key.secret = Base64-encoded-blob-of-randomness

metrics.namespace = a.name.to.put.metrics.under
metrics.endpoint = the-statsd-host:1234

baseplate.experiments

Experiment Providers

	baseplate.experiments.providers.r2: Legacy, R2-style experiments

	baseplate.experiments.providers.feature_flag: Feature Flag experiments

	baseplate.experiments.providers.forced_variant: Forced Variant experiment

	baseplate.experiments.providers.simple_experiment: Simple experiment

Configuration Parsing

	
baseplate.experiments.experiments_client_from_config(app_config, event_logger)

	Configure and return an ExperimentsContextFactory object.

This expects one configuration option:

	experiments.path

	The path to the experiment config file generated by the experiment
config fetcher daemon.

	Parameters

	
	raw_config (dict [https://docs.python.org/3.4/library/stdtypes.html#dict]) – The application configuration which should have
settings for the experiments client.

	event_logger (baseplate.events.EventLogger) – The EventLogger to be used
to log bucketing events.

	Return type

	ExperimentsContextFactory

	
baseplate.experiments.providers.parse_experiment(config)

	Factory method that parses an experiment config dict and returns an
appropriate Experiment class.

The config dict is expected to have the following values:

	id: Integer experiment ID, should be unique for each experiment.

	name: String experiment name, should be unique for each
experiment.

	owner: The group or individual that owns this experiment.

	version: String to identify the specific version of the
experiment.

	start_ts: A float of seconds since the epoch of date and time
when you want the experiment to start. If an experiment has not been
started yet, it is considered disabled.

	stop_ts: A float of seconds since the epoch of date and time when
you want the experiment to stop. Once an experiment is stopped, it
is considered disabled.

	type: String specifying the type of experiment to run. If this
value is not recognized, the experiment will be considered disabled.

	experiment: The experiment config dict for the specific type of
experiment. The format of this is determined by the specific
experiment type.

	enabled: (Optional) If set to False, the experiment will be
disabled and calls to experiment.variant will always return None and
will not log bucketing events to the event pipeline. Defaults to
True.

	global_override: (Optional) If this is set, calls to
experiment.variant will always return the override value and will not
log bucketing events to the event pipeline.

	Parameters

	config (dict [https://docs.python.org/3.4/library/stdtypes.html#dict]) – Configuration dict for the experiment you wish to run.

	Return type

	baseplate.experiments.providers.base.Experiment

	Returns

	A subclass of Experiment for the given experiment
type.

Classes

	
class baseplate.experiments.ExperimentsContextFactory(path, event_logger=None)

	Experiment client context factory

This factory will attach a new baseplate.experiments.Experiments
to an attribute on the context object.

	
class baseplate.experiments.Experiments(config_watcher, server_span, context_name, event_logger=None)

	Access to experiments with automatic refresh when changed.

This experiments client allows access to the experiments cached on disk
by the experiment config fetcher daemon. It will automatically reload
the cache when changed. This client also handles logging bucketing events
to the event pipeline when it is determined that the request is part of an
active variant.

	
get_all_experiment_names()

	Return a list of all valid experiment names from the
configuration file.

	Return type

	list [https://docs.python.org/3.4/library/stdtypes.html#list]

	Returns

	List of all valid experiment names.

	
is_valid_experiment(name)

	Return true if the provided experiment name is a valid
experiment.

	Parameters

	name (str [https://docs.python.org/3.4/library/stdtypes.html#str]) – Name of the experiment you want to check.

	Return type

	bool [https://docs.python.org/3.4/library/functions.html#bool]

	Returns

	Whether or not a particular experiment is valid.

	
variant(name, user=None, bucketing_event_override=None, **kwargs)

	Return which variant, if any, is active.

If a variant is active, a bucketing event will be logged to the event
pipeline unless any one of the following conditions are met:

	bucketing_event_override is set to False.

	The experiment specified by “name” explicitly disables bucketing
events.

	We have already logged a bucketing event for the value specified by
experiment.get_unique_id(**kwargs) within the current
request.

Since checking the status an experiment will fire a bucketing event, it
is best to only check the variant when you are making the decision that
will expose the experiment to the user. If you absolutely must check
the status of an experiment before you are sure that the experiment
will be exposed to the user, you can use bucketing_event_override to
disabled bucketing events for that check.

	Parameters

	
	name (str [https://docs.python.org/3.4/library/stdtypes.html#str]) – Name of the experiment you want to run.

	user (baseplate.core.User) – (Optional) User object for the user
you want to check the experiment variant for. If you set user,
the experiment parameters for that user (“user_id”, “logged_in”,
and “user_roles”) will be extracted and added to the inputs to the
call to Experiment.variant. The user’s event_fields will also be
extracted and added to the bucketing event if one is logged. It
is recommended that you provide a value for user rather than
setting the user parameters manually in kwargs.

	bucketing_event_override (bool [https://docs.python.org/3.4/library/functions.html#bool]) – (Optional) Set if you need to
override the default behavior for sending bucketing events. This
parameter should be set sparingly as it breaks the assumption that
you will fire a bucketing event when you first check the state of
an experiment. If set to False, will never send a bucketing event.
If set to None, no override will be applied. Set to None by
default. Note that setting bucketing_event_override to True has no
effect, it will behave the same as when it is set to None.

	kwargs – Arguments that will be passed to experiment.variant to
determine bucketing, targeting, and overrides. These values will also
be passed to the logger.

	Return type

	str [https://docs.python.org/3.4/library/stdtypes.html#str]

	Returns

	Variant name if a variant is active, None otherwise.

	
expose(experiment_name, variant_name, user=None, **kwargs)

	Log an event to indicate that a user has been exposed to an
experimental treatment.

	Parameters

	
	experiment_name (str [https://docs.python.org/3.4/library/stdtypes.html#str]) – Name of the experiment that was exposed.

	variant_name (str [https://docs.python.org/3.4/library/stdtypes.html#str]) – Name of the variant that was exposed.

	user (baseplate.core.User) – (Optional) User object for the user
you want to check the experiment variant for. If unset, it is
expected that user_id and logged_in values will be set in the kwargs

	kwargs – Additional arguments that will be passed to logger.

baseplate.experiments.providers.r2

Classes

	
class baseplate.experiments.providers.r2.R2Experiment(id, name, owner, variants, seed=None, bucket_val=u'user_id', targeting=None, overrides=None, newer_than=None, version=None)

	A “legacy”, r2-style experiment.

Deprecated since version 0.27: Use SimpleExperiment with SingleVariantSet or MultiVariantSet instead.

Should log bucketing events to the event pipeline.

Note that this style of experiment caps the size of your variants such
that:

def max_variant_size(variant_size, num_variants):
 return max(variant_size, (1/num_variants) * 100)

The config dict is expected to have the following values:

	variants: dict mapping variant names to their sizes. Variant
sizes are expressed as numeric percentages rather than a fraction of
1 (that is, 1.5 means 1.5%, not 150%).

	targeting: (Optional) dict that maps the names of targeting
parameters to lists of valid values. When determining the variant
of an experiment, the targeting parameters you want to use are passed
in as keyword arguments to the call to experiment.variant.

	overrides: (Optional) dict that maps override parameters to
dictionaries mapping values to the variant name you want to override
the variant to. When determining the variant of an experiment, the
override parameters you want to use are passed in as keyword
arguments to the call to experiment.variant.

	bucket_val: (Optional) Name of the parameter you want to use for
bucketing. This value must be passed to the call to
experiment.variant as a keyword argument. Defaults to “user_id”.

	seed: (Optional) Overrides the seed for this experiment. If this
is not set, name is used as the seed.

	newer_than: (Optional) The earliest time that a bucketing
resource can have been created by in UTC epoch seconds. If set, you
must pass the time, in UTC epoch seconds, when the resource that you
are bucketing was created to the call to experiment.variant as the
“created” parameter. For example, if you are bucketing based on
user_id, created would be set to the time when a User account was
created or when an LoID cookie was generated.

baseplate.experiments.providers.feature_flag

Classes

	
class baseplate.experiments.providers.feature_flag.FeatureFlag(id, name, owner, variants, seed=None, bucket_val=u'user_id', targeting=None, overrides=None, newer_than=None, version=None)

	An experiment with a single variant “active”.

Deprecated since version 0.27: Use SimpleExperiment with RolloutVariantSet instead.

Does not log bucketing events to the event pipeline. Use this type of
experiment if you just want to control access to a feature but do not want
to run an actual experiment. Some examples for when you would want to use
a FeatureFlag are:

	Slowly rolling out a new feature to a % of users

	Restricting a new feature to certain subreddits

The config dict is expected to have the following values:

	variants: dict mapping variant names to their sizes. Variant
sizes are expressed as numeric percentages rather than a fraction of
1 (that is, 1.5 means 1.5%, not 150%). For a feature flag, you can
only specify a single variant named “active”.

	targeting: (Optional) dict that maps the names of targeting
parameters to lists of valid values. When determining the variant
of an experiment, the targeting parameters you want to use are passed
in as keyword arguments to the call to experiment.variant.

	overrides: (Optional) dict that maps override parameters to
dictionaries mapping values to the variant name you want to override
the variant to. When determining the variant of an experiment, the
override parameters you want to use are passed in as keyword
arguments to the call to experiment.variant.

	bucket_val: (Optional) Name of the parameter you want to use for
bucketing. This value must be passed to the call to
experiment.variant as a keyword argument. Defaults to “user_id”.

	seed: (Optional) Overrides the seed for this experiment. If this
is not set, name is used as the seed.

	newer_than: (Optional) The earliest time that a bucketing
resource can have been created by in UTC epoch seconds. If set, you
must pass the time, in UTC epoch seconds, when the resource that you
are bucketing was created to the call to experiment.variant as the
“created” parameter. For example, if you are bucketing based on
user_id, created would be set to the time when a User account was
created or when an LoID cookie was generated.

baseplate.experiments.providers.forced_variant

Classes

	
class baseplate.experiments.providers.forced_variant.ForcedVariantExperiment(variant)

	An experiment that always returns a specified variant.

Deprecated since version 0.27.

Should not log bucketing events to the event pipeline. Note that
ForcedVariantExperiments are not directly configured, rather they are
used when an experiment is disabled or when “global_override” is set in
the base config.

baseplate.experiments.providers.simple_experiment

Classes

	
class baseplate.experiments.providers.simple_experiment.SimpleExperiment(id, name, owner, start_ts, stop_ts, config, experiment_version, shuffle_version, variant_set, bucket_seed, bucket_val, targeting, overrides, enabled=True, log_bucketing=True, num_buckets=1000)

	A basic experiment choosing from a set of variants.

Simple experiments are meant to be used in conjunction with a
VariantSet. This class serves as the replacement for the legacy
r2 and feature_flag providers.

baseplate.file_watcher

Watch a file and keep a parsed copy in memory that’s updated on changes.

The contents of the file are re-loaded and parsed only when necessary.

For example, a JSON file like the following:

{
 "one": 1,
 "two": 2
}

might be watched and parsed like this:

>>> watcher = FileWatcher(path, parser=json.load)
>>> watcher.get_data() == {u"one": 1, u"two": 2}
True

The return value of get_data()
would change whenever the underlying file changes.

	
class baseplate.file_watcher.FileWatcher(path, parser)

	Watch a file and load its data when it changes.

	Parameters

	
	path (str [https://docs.python.org/3.4/library/stdtypes.html#str]) – Full path to a file to watch.

	parser (callable) – A callable that takes an open file object, parses
or otherwise interprets the file, and returns whatever data is
meaningful.

	
get_data()

	Return the current contents of the file, parsed.

The watcher ensures that the file is re-loaded and parsed whenever its
contents change. Parsing only occurs when necessary, not on each call
to this method. This method returns whatever the most recent call to
the parser returned.

Make sure to call this method each time you need data from the file
rather than saving its results elsewhere. This ensures you always have
the freshest data.

Exceptions

	
exception baseplate.file_watcher.WatchedFileNotAvailableError(path, inner)

	Raised when the watched file could not be loaded.

baseplate.live_data

This component of Baseplate provides real-time synchronization of data across a
cluster of servers. It is intended for situations where data is read
frequently, doesn’t change super often, and when it does change needs to change
everywhere at once. In most cases, this will be an underlying feature of some
other system (e.g. an experiments framework.)

There are four main components of the live data system:

	ZooKeeper [https://zookeeper.apache.org/], a highly available data store that can push change notifications.

	The watcher, a sidecar daemon that watches nodes in ZooKeeper and syncs their
contents to disk.

	FileWatcher instances in your application
that load the synchronized data into memory.

	Something that writes to ZooKeeper (potentially the writer tool).

The watcher daemon and tools for writing data to ZooKeeper are covered on this
page.

Watcher Daemon

The watcher daemon is a sidecar that watches nodes in ZooKeeper and syncs their
contents to local files on change. It is entirely configured via INI file and
is run like so:

$ python -m baseplate.live_data.watcher some_config.ini

Where some_config.ini might look like:

[live-data]
zookeeper.hosts = zk01:2181,zk02:2181
zookeeper.credentials = secret/myservice/zookeeper_credentials

nodes.a.source = /a/node/in/zookeeper
nodes.a.dest = /var/local/file-on-disk

nodes.b.source = /another/node/in/zookeeper
nodes.b.dest = /var/local/another-file
nodes.b.owner = www-data
nodes.b.group = www-data
nodes.b.mode = 0400

Each of the defined nodes will be watched by the daemon.

The watcher daemon will touch the mtime of the local files periodically to
indicative liveliness to monitoring tools.

The Writer Tool

For simple cases where you just want to put the contents of a file into
ZooKeeper (perhaps in a CI task) you can use the live data writer. It expects a
configuration file with ZooKeeper connection information, like the watcher, and
takes some additional parameters on the command line.

$ python -m baseplate.live_data.writer some_config.ini \
 input.json /some/node/in/zookeeper
Writing input.json to ZooKeeper /some/node/in/zookeeper...

+++

@@ -1,4 +1,4 @@

{
- "key": "one"
+ "key": "two"
}
Wrote data to Zookeeper.

The ZooKeeper node must be created before this tool can be used so that
appropriate ACLs can be configured.

Direct access to ZooKeeper

If you’re doing something more complicated with your data that the above tools
don’t cover, you’ll want to connect directly to ZooKeeper.

baseplate.message_queue

This module provides a thin wrapper around POSIX Message queues.

Note

This implementation uses POSIX Message queues [http://man7.org/linux/man-pages/man7/mq_overview.7.html] and is not portable to
all operating systems.

There are also various limits on the sizes of queues:

	The msgqueue rlimit limits the amount of space the user can use on
message queues.

	The fs.mqueue.msg_max and fs.mqueue.msgsize_max sysctls limit
the maximum number of messages and the maximum size of each message
which a queue can be configured to have.

Minimal Example

Here’s a minimal, artificial example of a separate producer and consumer
process pair (run the producer then the consumer):

producer.py
from baseplate.message_queue import MessageQueue

If the queue doesn't already exist, we'll create it.
mq = MessageQueue(
 "/baseplate-testing", max_messages=1, max_message_size=1)
message = "1"
mq.put(message)
print("Put Message: %s" % message)

You should see:

Put Message: 1

After running the producer once, we have a single message pushed on to our
POSIX message queue. Next up, run the consumer:

consumer.py
from baseplate.message_queue import MessageQueue

mq = MessageQueue(
 "/baseplate-testing", max_messages=1, max_message_size=1)
Unless a `timeout` kwarg is passed, this will block until
we can pop a message from the queue.
message = mq.get()
print("Get Message: %s" % message)

You’ll end up seeing:

Get Message: 1

The /baseplate-testing value is the name of the queue. Queues names should
start with a forward slash, followed by one or more characters (but no
additional slashes).

Multiple processes can bind to the same queue by specifying the same queue
name.

Message Queue Default Limits

Most operating systems with POSIX queues include very low defaults for the
maximum message size and maximum queue depths. On Linux 2.6+, you can
list and check the values for these by running:

$ ls /proc/sys/fs/mqueue/
msg_default msg_max msgsize_default msgsize_max queues_max
$ cat /proc/sys/fs/mqueue/msgsize_max
8192

Explaining these in detail is outside the scope of this document, so we’ll
refer you to POSIX Message queues [http://man7.org/linux/man-pages/man7/mq_overview.7.html] (or man 7 mq_overview) for detailed
instructions on what these mean.

Gotchas

If you attempt to create a POSIX Queue where one of your provided values is
over the limits defined under /proc/sys/fs/mqueue/, you’ll probably end
up seeing a vague ValueError exception. Here’s an example:

>>> from baseplate.message_queue import MessageQueue
>>> mq = MessageQueue(
 "/over-the-limit", max_messages=11, max_message_size=8096)
Traceback (most recent call last):
 File "<input>", line 2, in <module>
 File "/home/myuser/baseplate/baseplate/message_queue.py", line 83, in __init__
 max_message_size=max_message_size,
ValueError: Invalid parameter(s)

Since the default value for /proc/sys/fs/mqueue/msg_max on Linux is 10,
our max_messages=11 is invalid. You can raise these limits by doing
something like this as a privileged user:

$ echo "50" > /proc/sys/fs/mqueue/msg_max

CLI Usage

The message_queue module can also be run as a command-line tool to consume,
log, and discard messages from a given queue:

python -m baseplate.message_queue --read /queue

or to write arbitrary messages to the queue:

echo hello! | python -m baseplate.message_queue --write /queue

See --help for more info.

baseplate.message_queue

A gevent-friendly POSIX message queue.

	
class baseplate.message_queue.MessageQueue(name, max_messages, max_message_size)

	A gevent-friendly (but not required) inter process message queue.

name should be a string of up to 255 characters consisting of an
initial slash, followed by one or more characters, none of which are
slashes.

Note: This relies on POSIX message queues being available and
select(2)-able like other file descriptors. Not all operating systems
support this.

	
get(timeout=None)

	Read a message from the queue.

	Parameters

	timeout (float [https://docs.python.org/3.4/library/functions.html#float]) – If the queue is empty, the call will block up to
timeout seconds or forever if None.

	Raises

	TimedOutError The queue was empty for the allowed
duration of the call.

	
put(message, timeout=None)

	Add a message to the queue.

	Parameters

	timeout (float [https://docs.python.org/3.4/library/functions.html#float]) – If the queue is full, the call will block up to
timeout seconds or forever if None.

	Raises

	TimedOutError The queue was full for the allowed
duration of the call.

	
unlink()

	Remove the queue from the system.

The queue will not leave until the last active user closes it.

	
close()

	Close the queue, freeing related resources.

This must be called explicitly if queues are created/destroyed on the
fly. It is not automatically called when the object is reclaimed by
Python.

Exceptions

	
exception baseplate.message_queue.MessageQueueError

	Base exception for message queue related errors.

	
exception baseplate.message_queue.TimedOutError

	Raised when a message queue operation times out.

baseplate.metrics

Application metrics via statsd.

A client for the application metrics aggregator statsd [https://github.com/etsy/statsd]. Metrics sent to
statsd are aggregated and written to graphite. Statsd is generally used for
whole-system health monitoring and insight into usage patterns.

Basic example usage:

from baseplate import metrics_client_from_config

client = metrics_client_from_config(app_config)
client.counter("events.connect").increment()
client.gauge("workers").replace(4)

with client.timer("something.todo"):
 do_something()
 do_something_else()

If you have multiple metrics to send, you can batch them up for efficiency:

with client.batch() as batch:
 batch.counter("froozles").increment()
 batch.counter("blargs").decrement(delta=3)

 with batch.timer("something"):
 do_another_thing()

and the batch will be sent in as few packets as possible when the with block
ends.

Clients

	
baseplate.metrics.make_client(namespace, endpoint)

	Return a configured client.

	Parameters

	
	namespace (str [https://docs.python.org/3.4/library/stdtypes.html#str]) – The root key to prefix all metrics with.

	endpoint (baseplate.config.EndpointConfiguration) – The endpoint to
send metrics to or None [https://docs.python.org/3.4/library/constants.html#None]. If None [https://docs.python.org/3.4/library/constants.html#None], the returned
client will discard all metrics.

	Returns

	A configured client.

	Return type

	baseplate.metrics.Client

See also

baseplate.metrics_client_from_config().

	
class baseplate.metrics.Client

	A client for statsd.

	
batch()

	Return a client-like object which batches up metrics.

Batching metrics can reduce the number of packets that are sent to
the stats aggregator.

	Return type

	Batch

	
counter(name)

	Return a Counter with the given name.

The sample rate is currently up to your application to enforce.

	Parameters

	name (str [https://docs.python.org/3.4/library/stdtypes.html#str]) – The name the counter should have.

	Return type

	Counter

	
gauge(name)

	Return a Gauge with the given name.

	Parameters

	name (str [https://docs.python.org/3.4/library/stdtypes.html#str]) – The name the gauge should have.

	Return type

	Gauge

	
histogram(name)

	Return a Histogram with the given name.

	Parameters

	name (str [https://docs.python.org/3.4/library/stdtypes.html#str]) – The name the histogram should have.

	Return type

	Histogram

	
timer(name)

	Return a Timer with the given name.

	Parameters

	name (str [https://docs.python.org/3.4/library/stdtypes.html#str]) – The name the timer should have.

	Return type

	Timer

	
class baseplate.metrics.Batch

	A batch of metrics to send to statsd.

The batch also supports the context manager protocol [https://docs.python.org/3/reference/datamodel.html#context-managers], for use with
Python’s with statement. When the context is exited, the batch will
automatically flush().

	
flush()

	Immediately send the batched metrics.

	
counter(name)

	Return a BatchCounter with the given name.

The sample rate is currently up to your application to enforce.

	Parameters

	name (str [https://docs.python.org/3.4/library/stdtypes.html#str]) – The name the counter should have.

	Return type

	Counter

	
gauge(name)

	Return a Gauge with the given name.

	Parameters

	name (str [https://docs.python.org/3.4/library/stdtypes.html#str]) – The name the gauge should have.

	Return type

	Gauge

	
histogram(name)

	Return a Histogram with the given name.

	Parameters

	name (str [https://docs.python.org/3.4/library/stdtypes.html#str]) – The name the histogram should have.

	Return type

	Histogram

	
timer(name)

	Return a Timer with the given name.

	Parameters

	name (str [https://docs.python.org/3.4/library/stdtypes.html#str]) – The name the timer should have.

	Return type

	Timer

Metrics

	
class baseplate.metrics.Counter

	A counter for counting events over time.

	
increment(delta=1, sample_rate=1.0)

	Increment the counter.

	Parameters

	
	delta (float [https://docs.python.org/3.4/library/functions.html#float]) – The amount to increase the counter by.

	sample_rate (float [https://docs.python.org/3.4/library/functions.html#float]) – What rate this counter is sampled at. [0-1].

	
decrement(delta=1, sample_rate=1.0)

	Decrement the counter.

This is equivalent to increment() with delta negated.

	
send(delta, sample_rate)

	Send the counter to the backend.

	Parameters

	
	delta (float [https://docs.python.org/3.4/library/functions.html#float]) – The amount to increase the counter by.

	sample_rate (float [https://docs.python.org/3.4/library/functions.html#float]) – What rate this counter is sampled at. [0-1].

	
class baseplate.metrics.Timer

	A timer for recording elapsed times.

The timer also supports the context manager protocol [https://docs.python.org/3/reference/datamodel.html#context-managers], for use with
Python’s with statement. When the context is entered the timer will
start() and when exited, the timer will automatically
stop().

	
start()

	Record the current time as the start of the timer.

	
stop()

	Stop the timer and record the total elapsed time.

	
class baseplate.metrics.Gauge

	A gauge representing an arbitrary value.

Note

The statsd protocol supports incrementing/decrementing gauges
from their current value. We do not support that here because this
feature is unpredictable in face of the statsd server restarting and
the “current value” being lost.

	
replace(new_value)

	Replace the value held by the gauge.

This will replace the value held by the gauge with no concern for its
previous value.

Note

Due to the way the protocol works, it is not possible to
replace gauge values with negative numbers.

	Parameters

	new_value (float [https://docs.python.org/3.4/library/functions.html#float]) – The new value to store in the gauge.

	
class baseplate.metrics.Histogram

	A bucketed distribution of integer values across a specific range.

Records data value counts across a configurable integer value range
with configurable buckets of value precision within that range.

Configuration of each histogram is managed by the backend service,
not by this interface. This implementation also depends on histograms
being supported by the StatsD backend. Specifically, the StatsD
backend must support the h key, e.g. metric_name:320|h.

	
add_sample(value)

	Add a new value to the histogram.

This records a new value to the histogram; the bucket it goes in
is determined by the backend service configurations.

baseplate.queue_consumer

Create a long-running process to consume from a queue. For example:

from kombu import Connection, Exchange
from baseplate import queue_consumer

def process_links(context, msg_body, msg):
 print('processing %s' % msg_body)

queue_consumer.consume(
 baseplate=make_baseplate(cfg, app_config),
 exchange=Exchange('reddit_exchange', 'direct'),
 connection=Connection(
 hostname='amqp://guest:guest@reddit.local:5672',
 virtual_host='/',
),
 queue_name='process_links_q',
 routing_keys=[
 'link_created',
 'link_deleted',
 'link_updated',
],
 handler=process_links,
)

This will create a queue named 'process_links_q' and bind the routing keys
'link_created', 'link_deleted', and 'link_updated'. It will then
register a consumer for 'process_links_q' to read messages and feed them to
process_links.

Register and run a queue consumer

	
baseplate.queue_consumer.consume(baseplate, exchange, connection, queue_name, routing_keys, handler)

	Create a long-running process to consume messages from a queue.

A queue with name queue_name is created and bound to the
routing_keys so messages published to the routing_keys are routed
to the queue.

Next, the process registers a consumer that receives messages from
the queue and feeds them to the handler.

The handler function must take 3 arguments:

	context: a baseplate context

	message_body: the text body of the message

	message: kombu.message.Message

The consumer will automatically ack each message after the handler
method exits. If there is an error in processing and the message must be
retried the handler should raise an exception to crash the process. This
will prevent the ack and the message will be re-queued at the head of
the queue.

	Parameters

	
	baseplate (baseplate.core.Baseplate) – A baseplate instance for the
service.

	exchange (kombu.Exchange) –

	connection (kombu.connection.Connection) –

	queue_name (str [https://docs.python.org/3.4/library/stdtypes.html#str]) – The name of the queue.

	routing_keys (list [https://docs.python.org/3.4/library/stdtypes.html#list]) – List of routing keys.

	handler – The handler method.

	
class baseplate.queue_consumer.KombuConsumer(worker, worker_thread)

	Consumer for use in baseplate.

The get_message() and
get_batch() methods will
automatically record diagnostic information.

	
get_message(server_span)

	Return a single message.

	Parameters

	server_span (baseplate.core.ServerSpan) –

	
get_batch(server_span, max_items, timeout)

	Return a batch of messages.

	Parameters

	
	server_span (baseplate.core.ServerSpan) –

	max_items (int [https://docs.python.org/3.4/library/functions.html#int]) – The maximum batch size.

	timeout (int [https://docs.python.org/3.4/library/functions.html#int]) – The maximum time to wait in seconds, or None
for no timeout.

If you require more direct control

	
class baseplate.queue_consumer.BaseKombuConsumer(worker, worker_thread)

	Base object for consuming messages from a queue.

A worker process accepts messages from the queue and puts them in a local
work queue. The “real” consumer can then get messages with
get_message() or
get_batch(). It is
that consumer’s responsibility to ack or reject messages.

Can be used directly, outside of standard baseplate context.

	
classmethod new(connection, queues)

	Create and initialize a consumer.

	Parameters

	
	exchange (kombu.Exchange) –

	queues (list [https://docs.python.org/3.4/library/stdtypes.html#list]) – List of kombu.queue.Queue objects.

	
get_message()

	Return a single message.

	
get_batch(max_items, timeout)

	Return a batch of messages.

	Parameters

	
	max_items (int [https://docs.python.org/3.4/library/functions.html#int]) – The maximum batch size.

	timeout (int [https://docs.python.org/3.4/library/functions.html#int]) – The maximum time to wait in seconds, or None
for no timeout.

baseplate.random

Extensions to the standard library random module.

	
class baseplate.random.WeightedLottery(items, weight_key)

	A lottery where items can have different chances of selection.

Items will be picked with chance proportional to their weight relative to
the sum of all weights, so the higher the weight, the higher the chance of
being picked.

	Parameters

	
	items – A sequence of items to choose from.

	weight_key – A function that takes an
item in items and returns a non-negative integer
weight for that item.

	Raises

	ValueError [https://docs.python.org/3.4/library/exceptions.html#ValueError] if any weights are negative or there are no
items.

An example of usage:

>>> words = ["apple", "banana", "cantelope"]
>>> lottery = WeightedLottery(words, weight_key=len)
>>> lottery.pick()
'banana'
>>> lottery.sample(2)
['apple', 'cantelope']

	
pick()

	Pick a random element from the lottery.

	
sample(sample_size)

	Sample elements from the lottery without replacement.

	Parameters

	sample_size (int [https://docs.python.org/3.4/library/functions.html#int]) – The number of items to sample from the lottery.

baseplate.retry

Note

This module is a low-level helper, many client libraries have
protocol-aware retry logic built in. Check your library before using this.

Policies for retrying an operation safely.

	
class baseplate.retry.RetryPolicy

	A policy for retrying operations.

Policies are meant to be used as an iterable:

for time_remaining in RetryPolicy.new(attempts=3):
 try:
 some_operation.do(timeout=time_remaining)
 break
 except SomeError:
 pass
else:
 raise MaxRetriesError

	
yield_attempts()

	Return an iterator which controls attempts.

On each iteration, the iterator will yield the number of seconds left
to retry, this should be used to set the timeout on the operation
being carried out. If there is no maximum time remaining,
None [https://docs.python.org/3.4/library/constants.html#None] is yielded instead.

The iterable will raise StopIteration [https://docs.python.org/3.4/library/exceptions.html#StopIteration] once the operation
should not be retried any further.

	
__iter__()

	Convenience alias for yield_attempts().

This allows policies to be directly iterated over.

	
static new(attempts=None, budget=None, backoff=None)

	Create a new retry policy with the given constraints.

	Parameters

	
	attempts (int [https://docs.python.org/3.4/library/functions.html#int]) – The maximum number of times the operation can be
attempted.

	budget (float [https://docs.python.org/3.4/library/functions.html#float]) – The maximum amount of time, in seconds, that the
local service will wait for the operation to succeed.

	backoff (float [https://docs.python.org/3.4/library/functions.html#float]) – The base amount of time, in seconds, for
exponential backoff between attempts. N in (N *
2**attempts).

baseplate.secrets

Secure access to secret tokens stored in Vault.

Fetcher Daemon

The secret fetcher is a sidecar that is run as a single daemon on each server.
It can authenticate to Vault either as the server itself (through an AWS-signed
instance identity document) or through a mounted JWT when running within a
Kubernetes pod. It then gets access to secrets based upon the policies mapped
to the role it authenticated as. Once authenticated, it fetches a given
list of secrets from Vault and stores all of the data in a local file.
It will automatically re-fetch secrets as their leases expire, ensuring
that key rotation happens on schedule.

Because this is a sidecar, individual application processes don’t need to talk
directly to Vault for simple secret tokens (but can do so if needed for more
complex operations like using the Transit backend). This reduces the load on
Vault and adds a safety net if Vault becomes unavailable.

Secret Store

The secret store is the in-application integration with the file output of the
fetcher daemon.

	
baseplate.secrets.secrets_store_from_config(app_config)

	Configure and return a secrets store.

This expects one configuration option:

	secrets.path

	The path to the secrets file generated by the secrets fetcher daemon.

	Parameters

	raw_config (dict [https://docs.python.org/3.4/library/stdtypes.html#dict]) – The application configuration which should have
settings for the secrets store.

	Return type

	SecretsStore

	
class baseplate.secrets.SecretsStore(path)

	Access to secret tokens with automatic refresh when changed.

This local vault allows access to the secrets cached on disk by the fetcher
daemon. It will automatically reload the cache when it is changed. Do not
cache or store the values returned by this class’s methods but rather get
them from this class each time you need them. The secrets are served from
memory so there’s little performance impact to doing so and you will be
sure to always have the current version in the face of key rotation etc.

	
get_raw(path)

	Return a dictionary of key/value pairs for the given secret path.

This is the raw representation of the secret in the underlying store.

	Return type

	dict [https://docs.python.org/3.4/library/stdtypes.html#dict]

	
get_simple(path)

	Decode and return a simple secret.

Simple secrets are a convention of key/value pairs in the raw secret
payload. The following keys are significant:

	type

	This must always be simple for this method.

	value

	This contains the raw value of the secret token.

	encoding

	(Optional) If present, how to decode the value from how it’s
encoded at rest (only base64 currently supported).

	Return type

	bytes [https://docs.python.org/3.4/library/functions.html#bytes]

	
get_versioned(path)

	Decode and return a versioned secret.

Versioned secrets are a convention of key/value pairs in the raw secret
payload. The following keys are significant:

	type

	This must always be versioned for this method.

	current, next, and previous

	The raw secret value’s versions. current is the “active”
version, which is used for new creation/signing operations.
previous and next are only used for validation (e.g.
checking signatures) to ensure continuity when keys rotate. Both
previous and next are optional.

	encoding

	(Optional) If present, how to decode the values from how they are
encoded at rest (only base64 currently supported).

	Return type

	VersionedSecret

	
get_vault_url()

	Return the URL for accessing Vault directly.

	Return type

	str [https://docs.python.org/3.4/library/stdtypes.html#str]

See also

The baseplate.context.hvac module provides
integration with HVAC, a Vault client.

	
get_vault_token()

	Return a Vault authentication token.

The token will have policies attached based on the current EC2 server’s
Vault role. This is only necessary if talking directly to Vault.

	Return type

	str [https://docs.python.org/3.4/library/stdtypes.html#str]

See also

The baseplate.context.hvac module provides
integration with HVAC, a Vault client.

	
make_object_for_context(name, server_span)

	Return an object that can be added to the context object.

This allows the secret store to be used with
add_to_context():

secrets = SecretsStore("/var/local/secrets.json")
baseplate.add_to_context("secrets", secrets)

	
class baseplate.secrets.VersionedSecret

	A versioned secret.

Versioned secrets allow for seamless rotation of keys. When using the
secret to generate tokens (e.g. signing a message) always use the
current value. When validating tokens, check against all the versions
in all_versions. This will allow keys to rotate smoothly even if not
done instantly across all users of the secret.

	
all_versions

	Return an iterator over the available versions of this secret.

	
classmethod from_simple_secret(value)

	Make a fake versioned secret from a single value.

This is a backwards compatibility shim for use with APIs that take
versioned secrets. Try to use proper versioned secrets fetched from the
secrets store instead.

Exceptions

	
exception baseplate.secrets.CorruptSecretError(path, message)

	Raised when the requested secret does not match the expected format.

	
exception baseplate.secrets.SecretNotFoundError(name)

	Raised when the requested secret is not in the local vault.

	
exception baseplate.secrets.SecretsNotAvailableError(inner)

	Raised when the secrets store was not accessible.

baseplate.thrift_pool

A Thrift client connection pool.

Note

See baseplate.context.thrift.ThriftContextFactory for
a convenient way to integrate the pool with your application.

The pool lazily creates connections and maintains them in a pool. Individual
connections have a maximum lifetime, after which they will be recycled.

A basic example of usage:

pool = thrift_pool_from_config(app_config, "example_service.")
with pool.connection() as protocol:
 client = ExampleService.Client(protocol)
 client.do_example_thing()

Configuration Parsing

	
baseplate.thrift_pool.thrift_pool_from_config(app_config, prefix, **kwargs)

	Make a ThriftConnectionPool from a configuration dictionary.

The keys useful to thrift_pool_from_config() should be prefixed,
e.g. example_service.endpoint etc. The prefix argument specifies
the prefix used to filter keys. Each key is mapped to a corresponding
keyword argument on the ThriftConnectionPool constructor. Any
keyword arguments given to this function will be also be passed through to
the constructor. Keyword arguments take precedence over the configuration
file.

Supported keys:

	
	endpoint (required): A host:port pair, e.g. localhost:2014,

	where the Thrift server can be found.

	size: The size of the connection pool.

	
	max_age: The oldest a connection can be before it’s recycled and

	replaced with a new one. Written as a time span e.g. 1 minute.

	
	timeout: The maximum amount of time a connection attempt or RPC call

	can take before a TimeoutError is raised.

	
	max_retries: The maximum number of times the pool will attempt to

	open a connection.

Classes

	
class baseplate.thrift_pool.ThriftConnectionPool

	A pool that maintains a queue of open Thrift connections.

	Parameters

	
	endpoint (baseplate.config.EndpointConfiguration) – The remote address
of the Thrift service.

	size (int [https://docs.python.org/3.4/library/functions.html#int]) – The maximum number of connections that can be open
before new attempts to open block.

	max_age (int [https://docs.python.org/3.4/library/functions.html#int]) – The maximum number of seconds a connection should be
kept alive. Connections older than this will be reaped.

	timeout (int [https://docs.python.org/3.4/library/functions.html#int]) – The maximum number of seconds a connection attempt or
RPC call can take before a TimeoutError is raised.

	max_retries (int [https://docs.python.org/3.4/library/functions.html#int]) – The maximum number of times the pool will attempt
to open a connection.

	protocol_factory (thrift.protocol.TProtocol.TProtocolBase) – The
factory to use for creating protocols from transports. This is useful
for talking to services that don’t support THeaderProtocol.

All exceptions raised by this class derive from
TTransportException.

	
connection(**kwds)

	Acquire a connection from the pool.

This method is to be used with a context manager. It returns a
connection from the pool, or blocks up to timeout seconds
waiting for one if the pool is full and all connections are in use.

When the context is exited, the connection is returned to the pool.
However, if it was exited via an unexpected Thrift exception, the
connection is closed instead because the state of the connection is
unknown.

baseplate.service_discovery

Integration with Synapse’s file_output service discovery method.

Note

Production Baseplate services have Synapse hooked up to a
local HAProxy instance which will automatically route connections to
services for you if you connect to the correct address/port on
localhost. That is the preferred method of connecting to services.

The contents of this module are useful for inspecting the service
inventory directly for cases where a blind TCP connection is
insufficient (e.g. to give service addresses to a client, or for
topology-aware clients like Cassandra).

A basic example of usage:

inventory = ServiceInventory("/var/lib/synapse/example.json")
backend = inventory.get_backend()
print(backend.endpoint.address)

	
class baseplate.service_discovery.ServiceInventory(filename)

	The inventory enumerates available backends for a single service.

	Parameters

	filename (str [https://docs.python.org/3.4/library/stdtypes.html#str]) – The absolute path to the Synapse-generated
inventory file in JSON format.

	
get_backends()

	Return a list of all available backends in the inventory.

If the inventory file becomes unavailable, the previously seen
inventory is returned.

	Return type

	list of Backend objects

	
get_backend()

	Return a randomly chosen backend from the available backends.

If weights are specified in the inventory, they will be
respected when making the random selection.

	Return type

	Backend

	Raises

	NoBackendsAvailableError if the inventory
has no available endpoints.

	
class baseplate.service_discovery.Backend

	A description of a service backend.

This is a tuple of several values:

	id

	A unique integer ID identifying the backend.

	name

	The name of the backend.

	endpoint

	An EndpointConfiguration object
describing the network address of the backend.

	weight

	An integer weight indicating how much to prefer this backend
when choosing whom to connect to.

Exceptions

	
exception baseplate.service_discovery.NoBackendsAvailableError

	Raised when no backends are available for this service.

baseplate-healthcheck

Baseplate services have well-defined health-check endpoints. The
baseplate-healthcheck tool connects to a given service and checks these
endpoints to see if they’re alive.

Command Line

There are two required arguments on the command line: the protocol of the
service to check (thrift or wsgi) and the endpoint to connect to.

For example, to check a Thrift-based service listening on port 9090:

baseplate-healthcheck thrift 127.0.0.1:9090

or a WSGI (HTTP) service listening on a UNIX domain socket:

baseplate-healthcheck wsgi /run/myservice.sock

Results

If the service is healthy, the tool will exit with a status code indicating
success (0) and print “OK!”. If the service is unhealthy, the tool will exit
with a status code indicating failure (1) and print an error message explaining
what went wrong.

Usage

This script can be used as part of a process to validate a server after
creation, or to check service liveliness for a service discovery system.

baseplate-serve

Baseplate comes with a simple Gevent-based server for both Thrift and WSGI
applications called baseplate-serve.

Configuration

There is one required parameter on the command line, the path to an INI-format
configuration file. There should be two sections in the file: the server
section and the app section. The section headers look like server:main
or app:main where the part before the : is the type of section and the
part after is the “name”. Baseplate looks for sections named main by
default but can be overridden with the --server-name and --app-name
options.

The Server

Here’s an example of a server section:

[server:main]
factory = baseplate.server.thrift
stop_timeout = 30

The factory tells baseplate what code to use to run the server. Baseplate
comes with two servers built in:

	baseplate.server.thrift

	A Gevent Thrift server.

	baseplate.server.wsgi

	A Gevent WSGI server.

Both take two optional configuration values as well:

	max_concurrency

	The maximum number of simultaneous clients the server will handle. Unlimited
by default.

	stop_timeout

	How long, in seconds, to wait for active connections to finish up gracefully
when shutting down. By default, the server will shut down immediately.

The WSGI server takes an additional optional parameter:

	handler

	A full name of a class which subclasses
gevent.pywsgi.WSGIHandler for extra functionality.

The Application

And now the real bread and butter, your app section:

[app:main]
factory = my_app.processor:make_processor
foo = 3
bar = 22
noodles.blah = one, two, three

The app section also takes a factory. This should be the name of a
callable in your code which builds and returns your application. The part
before the : is a Python module. The part after the : is the name of a
callable object within that module.

The rest of the options in the app section of the configuration file get
passed as a dictionary to your application callable. You can parse these
options with baseplate.config.

The application factory should return an appropriate object for your server:

	Thrift

	A TProcessor.

	WSGI

	A WSGI callable.

Logging

The baseplate server provides a default configuration for the Python standard
logging system. The root logger will print to stdout with a format that
includes trace information. The default log level is INFO or DEBUG if
the --debug flag is passed to baseplate-serve.

If more complex logging configuration is necessary, the configuration file will
override the default setup. The configuration format [https://docs.python.org/2/library/logging.config.html#logging-config-fileformat] is documented in the
standard library.

Automatic reload on source changes

In development, it’s useful for the server to restart itself when you change
code. You can do this by passing the --reload flag to baseplate-serve.

This should not be used in production environments.

Einhorn

baseplate-serve can run as a worker in Stripe’s Einhorn socket manager [https://github.com/stripe/einhorn].
This allows Einhorn to handle binding the socket, worker management, rolling
restarts, and worker health checks.

Baseplate supports Einhorn’s “manual ACK” protocol. Once the application is
loaded and ready to serve, Baseplate notifies the Einhorn master process via
its command socket.

An example command line:

einhorn -m manual -n 4 --bind localhost:9190 \
 baseplate-serve myapp.ini

Debug Signal

Applications running under baseplate-serve will respond to SIGUSR1 by
printing a stack trace to the logger. This can be useful for debugging
deadlocks and other issues.

Note that Einhorn will exit if you send it a SIGUSR1. You can instead open up
einhornsh and instruct the master to send the signal to all workers:

$ einhornsh
> signal SIGUSR1
Successfully sent USR1s to 4 processes: [...]

baseplate-script

This command allows you to run a piece of Python code with the application
config loaded similarly to baseplate-serve. The command is
baseplate-script.

Command Line

There are two required arguments on the command line: the path to an INI-format
configuration file, and the fully qualified name of a Python function to run.

The function should be specified as a module path, a colon, and a function
name. For example, my_service.models:create_schema. The function should
take a single argument which will be the application’s configuration as a
dictionary. This is the same as the application factory used by the server.

Just like with baseplate-serve, the app:main section will be loaded by
default. This can be overridden with the --app-name option.

Example

Given a configuration file, printer.ini:

[app:main]
message = Hello!

[app:bizarro]
message = !olleH

and a small script, printer.py:

def run(app_config):
 print(app_config["message"])

You can run the script with various configurations:

$ baseplate-script printer.ini printer:run
Hello!

$ baseplate-script printer.ini --app-name=bizarro printer:run
!olleH

baseplate-tshell

This command allows you to run an interactive Python shell for a Thrift service
with the application config and context loaded. The command is
baseplate-tshell.

HTTP services can use Pyramid’s pshell [https://docs.pylonsproject.org/projects/pyramid/en/latest/pscripts/pshell.html] in order to get an interactive shell.

Command Line

This command requires the path to an INI-format configuration file to run.

Just like with baseplate-serve, the app:main section will be loaded by
default. This can be overridden with the --app-name option.

By default, the shell will have variables containing the application and the
context exposed. Additional variables can be exposed by providing a setup
function in the tshell section of the configuration file.

Example

Given a configuration file, example.ini:

[app:main]
factory = baseplate.server.thrift

[tshell]
setup = my_service:tshell_setup

and a small setup function, my_service.py:

def tshell_setup(env, env_banner):
 from my_service import models
 env['models'] = models
 env_banner['models'] = 'Models module'

You can begin a shell with the models module exposed:

$ tshell example.ini
Baseplate Interactive Shell
Python 2.7.6 (default, Nov 23 2017, 15:49:48)
[GCC 4.8.4]

Available Objects:

 app This project's app instance
 context The context for this shell instance's span
 models Models module
>>>

Glossary

	Context Object

	An object containing per-request state passed into your request handler. The exact form it
takes depends on the framework you are using.

	Thrift

	The context object passed into handler functions when using a
ContextProcessor.

	Pyramid

	The request object passed into views.

 Python Module Index

 b

 		 	

 		
 b	

 	[image: -]
 	
 baseplate	

 	
 	
 baseplate.config	

 	
 	
 baseplate.context	

 	
 	
 baseplate.context.cassandra	

 	
 	
 baseplate.context.hvac	

 	
 	
 baseplate.context.kombu	

 	
 	
 baseplate.context.memcache	

 	
 	
 baseplate.context.sqlalchemy	

 	
 	
 baseplate.context.thrift	

 	
 	
 baseplate.core	

 	
 	
 baseplate.crypto	

 	
 	
 baseplate.diagnostics	

 	
 	
 baseplate.events	

 	
 	
 baseplate.experiments	

 	
 	
 baseplate.experiments.providers.feature_flag	

 	
 	
 baseplate.experiments.providers.forced_variant	

 	
 	
 baseplate.experiments.providers.r2	

 	
 	
 baseplate.experiments.providers.simple_experiment	

 	
 	
 baseplate.file_watcher	

 	
 	
 baseplate.integration	

 	
 	
 baseplate.integration.pyramid	

 	
 	
 baseplate.integration.thrift	

 	
 	
 baseplate.message_queue	

 	
 	
 baseplate.metrics	

 	
 	
 baseplate.random	

 	
 	
 baseplate.retry	

 	
 	
 baseplate.secrets	

 	
 	
 baseplate.service_discovery	

 	
 	
 baseplate.thrift_pool	

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | K
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | V
 | W
 | Y

_

 	
 	__iter__() (baseplate.retry.RetryPolicy method)

A

 	
 	add_sample() (baseplate.metrics.Histogram method)

 	add_to_context() (baseplate.core.Baseplate method)

 	
 	all_versions (baseplate.secrets.VersionedSecret attribute)

 	attach_context() (baseplate.core.EdgeRequestContext method)

 	AuthenticationToken (class in baseplate.core)

B

 	
 	Backend (class in baseplate.service_discovery)

 	Base64() (in module baseplate.config)

 	BaseKombuConsumer (class in baseplate.queue_consumer)

 	Baseplate (class in baseplate.core)

 	baseplate (module)

 	baseplate.config (module)

 	baseplate.context (module)

 	baseplate.context.cassandra (module)

 	baseplate.context.hvac (module)

 	baseplate.context.kombu (module)

 	baseplate.context.memcache (module)

 	baseplate.context.sqlalchemy (module)

 	baseplate.context.thrift (module)

 	baseplate.core (module)

 	baseplate.crypto (module)

 	baseplate.diagnostics (module)

 	baseplate.events (module)

 	baseplate.experiments (module)

 	baseplate.experiments.providers.feature_flag (module)

 	
 	baseplate.experiments.providers.forced_variant (module)

 	baseplate.experiments.providers.r2 (module)

 	baseplate.experiments.providers.simple_experiment (module)

 	baseplate.file_watcher (module)

 	baseplate.integration (module)

 	baseplate.integration.pyramid (module)

 	baseplate.integration.thrift (module)

 	baseplate.message_queue (module)

 	baseplate.metrics (module)

 	baseplate.random (module)

 	baseplate.retry (module)

 	baseplate.secrets (module)

 	baseplate.service_discovery (module)

 	baseplate.thrift_pool (module)

 	BaseplateConfigurator (class in baseplate.integration.pyramid)

 	BaseplateObserver (class in baseplate.core)

 	BaseplateProcessorEventHandler (class in baseplate.integration.thrift)

 	Batch (class in baseplate.metrics)

 	batch() (baseplate.metrics.Client method)

 	Boolean() (in module baseplate.config)

C

 	
 	CassandraContextFactory (class in baseplate.context.cassandra)

 	Client (class in baseplate.metrics)

 	close() (baseplate.message_queue.MessageQueue method)

 	cluster_from_config() (in module baseplate.context.cassandra)

 	ConfigurationError

 	configure_error_reporting() (baseplate.core.Baseplate method)

 	configure_logging() (baseplate.core.Baseplate method)

 	configure_metrics() (baseplate.core.Baseplate method)

 	configure_tracing() (baseplate.core.Baseplate method)

 	connection() (baseplate.thrift_pool.ThriftConnectionPool method)

 	
 	connection_from_config() (in module baseplate.context.kombu)

 	constant_time_compare() (in module baseplate.crypto)

 	consume() (in module baseplate.queue_consumer)

 	Context Object

 	ContextFactory (class in baseplate.context)

 	CorruptSecretError

 	Counter (class in baseplate.metrics)

 	counter() (baseplate.metrics.Batch method)

 	(baseplate.metrics.Client method)

 	CQLMapperContextFactory (class in baseplate.context.cassandra)

D

 	
 	decompress_and_load() (in module baseplate.context.memcache.lib)

 	decompress_and_unpickle() (in module baseplate.context.memcache.lib)

 	
 	decrement() (baseplate.metrics.Counter method)

 	DictOf() (in module baseplate.config)

E

 	
 	EdgeRequestContext (class in baseplate.core)

 	EdgeRequestContextFactory (class in baseplate.core)

 	Endpoint() (in module baseplate.config)

 	EndpointConfiguration (class in baseplate.config)

 	error_reporter_from_config() (in module baseplate)

 	Event (class in baseplate.events)

 	event_fields() (baseplate.core.EdgeRequestContext method)

 	(baseplate.core.OAuthClient method)

 	(baseplate.core.User method)

 	
 	EventError

 	EventQueue (class in baseplate.events)

 	EventQueueFullError

 	EventTooLargeError

 	exchange_from_config() (in module baseplate.context.kombu)

 	Experiments (class in baseplate.experiments)

 	experiments_client_from_config() (in module baseplate.experiments)

 	ExperimentsContextFactory (class in baseplate.experiments)

 	ExpiredSignatureError

 	expose() (baseplate.experiments.Experiments method)

F

 	
 	Fallback() (in module baseplate.config)

 	FeatureFlag (class in baseplate.experiments.providers.feature_flag)

 	FieldKind (class in baseplate.events)

 	File() (in module baseplate.config)

 	FileWatcher (class in baseplate.file_watcher)

 	finish() (baseplate.core.ServerSpan method)

 	(baseplate.core.Span method)

 	
 	Float() (in module baseplate.config)

 	flush() (baseplate.metrics.Batch method)

 	ForcedVariantExperiment (class in baseplate.experiments.providers.forced_variant)

 	from_simple_secret() (baseplate.secrets.VersionedSecret class method)

 	from_upstream() (baseplate.core.EdgeRequestContextFactory method)

 	(baseplate.core.TraceInfo class method)

G

 	
 	Gauge (class in baseplate.metrics)

 	gauge() (baseplate.metrics.Batch method)

 	(baseplate.metrics.Client method)

 	get() (baseplate.message_queue.MessageQueue method)

 	get_all_experiment_names() (baseplate.experiments.Experiments method)

 	get_backend() (baseplate.service_discovery.ServiceInventory method)

 	get_backends() (baseplate.service_discovery.ServiceInventory method)

 	get_batch() (baseplate.queue_consumer.BaseKombuConsumer method)

 	(baseplate.queue_consumer.KombuConsumer method)

 	
 	get_data() (baseplate.file_watcher.FileWatcher method)

 	get_field() (baseplate.events.Event method)

 	get_message() (baseplate.queue_consumer.BaseKombuConsumer method)

 	(baseplate.queue_consumer.KombuConsumer method)

 	get_raw() (baseplate.secrets.SecretsStore method)

 	get_simple() (baseplate.secrets.SecretsStore method)

 	get_vault_token() (baseplate.secrets.SecretsStore method)

 	get_vault_url() (baseplate.secrets.SecretsStore method)

 	get_versioned() (baseplate.secrets.SecretsStore method)

H

 	
 	has_role() (baseplate.core.User method)

 	HIGH_CARDINALITY (baseplate.events.FieldKind attribute)

 	Histogram (class in baseplate.metrics)

 	
 	histogram() (baseplate.metrics.Batch method)

 	(baseplate.metrics.Client method)

 	hvac_factory_from_config() (in module baseplate.context.hvac)

 	HvacContextFactory (class in baseplate.context.hvac)

I

 	
 	id (baseplate.core.OAuthClient attribute)

 	(baseplate.core.User attribute)

 	IncorrectSignatureError

 	increment() (baseplate.metrics.Counter method)

 	
 	Integer() (in module baseplate.config)

 	is_logged_in (baseplate.core.User attribute)

 	is_type() (baseplate.core.OAuthClient method)

 	is_valid_experiment() (baseplate.experiments.Experiments method)

K

 	
 	KombuConsumer (class in baseplate.queue_consumer)

 	
 	KombuProducer (class in baseplate.context.kombu)

 	KombuProducerContextFactory (class in baseplate.context.kombu)

L

 	
 	log() (baseplate.core.ServerSpan method)

 	(baseplate.core.Span method)

 	
 	LoggingBaseplateObserver (class in baseplate.diagnostics.logging)

M

 	
 	make_child() (baseplate.core.ServerSpan method)

 	(baseplate.core.Span method)

 	make_client() (in module baseplate.metrics)

 	make_dump_and_compress_fn() (in module baseplate.context.memcache.lib)

 	make_object_for_context() (baseplate.context.ContextFactory method)

 	(baseplate.secrets.SecretsStore method)

 	make_pickle_and_compress_fn() (in module baseplate.context.memcache.lib)

 	
 	make_server_span() (baseplate.core.Baseplate method)

 	make_signature() (in module baseplate.crypto)

 	MemcacheContextFactory (class in baseplate.context.memcache)

 	MessageQueue (class in baseplate.message_queue)

 	MessageQueueError

 	metrics_client_from_config() (in module baseplate)

 	MetricsBaseplateObserver (class in baseplate.diagnostics.metrics)

 	MonitoredMemcacheConnection (class in baseplate.context.memcache)

N

 	
 	new() (baseplate.core.EdgeRequestContextFactory method)

 	(baseplate.queue_consumer.BaseKombuConsumer class method)

 	(baseplate.retry.RetryPolicy static method)

 	
 	NoAuthenticationError

 	NoBackendsAvailableError

 	NORMAL (baseplate.events.FieldKind attribute)

O

 	
 	oauth_client (baseplate.core.EdgeRequestContext attribute)

 	OAuthClient (class in baseplate.core)

 	OBFUSCATED (baseplate.events.FieldKind attribute)

 	on_child_span_created() (baseplate.core.ServerSpanObserver method)

 	(baseplate.core.SpanObserver method)

 	on_finish() (baseplate.core.ServerSpanObserver method)

 	(baseplate.core.SpanObserver method)

 	on_log() (baseplate.core.ServerSpanObserver method)

 	(baseplate.core.SpanObserver method)

 	
 	on_server_span_created() (baseplate.core.BaseplateObserver method)

 	on_set_tag() (baseplate.core.ServerSpanObserver method)

 	(baseplate.core.SpanObserver method)

 	on_start() (baseplate.core.ServerSpanObserver method)

 	(baseplate.core.SpanObserver method)

 	OneOf() (in module baseplate.config)

 	Optional() (in module baseplate.config)

P

 	
 	parse_config() (in module baseplate.config)

 	parse_experiment() (in module baseplate.experiments.providers)

 	Percent() (in module baseplate.config)

 	pick() (baseplate.random.WeightedLottery method)

 	
 	pool_from_config() (in module baseplate.context.memcache)

 	publish() (baseplate.context.kombu.KombuProducer method)

 	put() (baseplate.events.EventQueue method)

 	(baseplate.message_queue.MessageQueue method)

R

 	
 	R2Experiment (class in baseplate.experiments.providers.r2)

 	register() (baseplate.core.Baseplate method)

 	(baseplate.core.ServerSpan method)

 	(baseplate.core.Span method)

 	
 	replace() (baseplate.metrics.Gauge method)

 	RetryPolicy (class in baseplate.retry)

 	roles (baseplate.core.User attribute)

S

 	
 	sample() (baseplate.random.WeightedLottery method)

 	SecretNotFoundError

 	secrets_store_from_config() (in module baseplate.secrets)

 	SecretsNotAvailableError

 	SecretsStore (class in baseplate.secrets)

 	send() (baseplate.metrics.Counter method)

 	SentryBaseplateObserver (class in baseplate.diagnostics.sentry)

 	serialize_v1_event() (in module baseplate.events)

 	serialize_v2_event() (in module baseplate.events)

 	ServerSpan (class in baseplate.core)

 	ServerSpanInitialized (class in baseplate.integration.pyramid)

 	ServerSpanObserver (class in baseplate.core)

 	service (baseplate.core.EdgeRequestContext attribute)

 	ServiceInventory (class in baseplate.service_discovery)

 	session (baseplate.core.EdgeRequestContext attribute)

 	Session (class in baseplate.core)

 	
 	set_field() (baseplate.events.Event method)

 	set_tag() (baseplate.core.ServerSpan method)

 	(baseplate.core.Span method)

 	SignatureError

 	SignatureInfo (class in baseplate.crypto)

 	SimpleExperiment (class in baseplate.experiments.providers.simple_experiment)

 	Span (class in baseplate.core)

 	SpanObserver (class in baseplate.core)

 	sqlalchemy.engine_from_config() (in module baseplate.context.sqlalchemy)

 	SQLAlchemyEngineContextFactory (class in baseplate.context.sqlalchemy)

 	SQLAlchemySessionContextFactory (class in baseplate.context.sqlalchemy)

 	start() (baseplate.core.ServerSpan method)

 	(baseplate.core.Span method)

 	(baseplate.metrics.Timer method)

 	stop() (baseplate.metrics.Timer method)

 	String() (in module baseplate.config)

 	subject (baseplate.core.AuthenticationToken attribute)

T

 	
 	thrift_pool_from_config() (in module baseplate.thrift_pool)

 	ThriftConnectionPool (class in baseplate.thrift_pool)

 	ThriftContextFactory (class in baseplate.context.thrift)

 	TimedOutError

 	Timer (class in baseplate.metrics)

 	timer() (baseplate.metrics.Batch method)

 	(baseplate.metrics.Client method)

 	
 	Timespan() (in module baseplate.config)

 	TraceBaseplateObserver (class in baseplate.diagnostics.tracing)

 	TraceInfo (class in baseplate.core)

 	tracing_client_from_config() (in module baseplate)

 	TupleOf() (in module baseplate.config)

U

 	
 	UnixGroup() (in module baseplate.config)

 	UnixUser() (in module baseplate.config)

 	unlink() (baseplate.message_queue.MessageQueue method)

 	
 	UnreadableSignatureError

 	user (baseplate.core.EdgeRequestContext attribute)

 	User (class in baseplate.core)

V

 	
 	validate_signature() (in module baseplate.crypto)

 	
 	variant() (baseplate.experiments.Experiments method)

 	VersionedSecret (class in baseplate.secrets)

W

 	
 	WatchedFileNotAvailableError

 	
 	WeightedLottery (class in baseplate.random)

Y

 	
 	yield_attempts() (baseplate.retry.RetryPolicy method)

 _static/favicon.png

_static/down-pressed.png

_static/down.png

_static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/comment-bright.png

_static/comment-close.png

_static/baseplate.png

_static/comment.png

nav.xhtml

 Table of Contents

 		
 Baseplate

 		
 baseplate.core: The skeleton of the instrumentation framework

 		
 baseplate.context: Integration with client libraries

 		
 baseplate.context.cassandra: Cassandra CQL Client

 		
 baseplate.context.hvac: Client for using Vault's advanced features

 		
 baseplate.context.kombu: Client for publishing to queues

 		
 baseplate.context.memcache: Memcached Client

 		
 baseplate.context.redis: Redis Client

 		
 baseplate.context.sqlalchemy: SQL Client for relational databases (e.g. PostgreSQL)

 		
 baseplate.context.thrift: Thrift client for RPC to other backend services

 		
 baseplate.integration: Integration with application frameworks

 		
 baseplate.diagnostics: Diagnostics observers

 		
 baseplate: General purpose helpers

 		
 baseplate.config: Configuration parsing

 		
 baseplate.crypto: Cryptographic Primitives

 		
 baseplate.events: Events for the data pipeline

 		
 baseplate.experiments: Experiments framework

 		
 baseplate.experiments.providers.r2: Legacy, R2-style experiments

 		
 baseplate.experiments.providers.feature_flag: Feature Flag experiments

 		
 baseplate.experiments.providers.forced_variant: Forced Variant experiment

 		
 baseplate.experiments.providers.simple_experiment: Simple experiment

 		
 baseplate.file_watcher: Read files from disk as they change

 		
 baseplate.live_data: Tools for centralized data that updates near instantly

 		
 baseplate.message_queue: POSIX IPC Message Queues

 		
 baseplate.metrics: Counters, timers, gauges, and histograms for statsd

 		
 baseplate.queue_consumer: Consume messages from a queue

 		
 baseplate.random: Extensions to the standard library's random module

 		
 baseplate.retry: Policies for retrying operations

 		
 baseplate.secrets: Secure storage and access to secret tokens and credentials

 		
 baseplate.thrift_pool: A Thrift client connection pool

 		
 baseplate.service_discovery: Integration with Synapse service discovery

 		
 baseplate-healthcheck: Is your service alive?

 		
 baseplate-serve: The application server

 		
 baseplate-script: Run backend scripts

 		
 baseplate-tshell: Begin an interactive shell for a Thrift service

_static/ajax-loader.gif

